Applying McLuhan

I begin with McLuhan, whose Laws of Media or Tetrad offers greater insights for Mobile AR, sustaining and developing upon the arguments developed in my assessment of the interlinking technologies that meet in Mobile AR, whilst also providing the basis to address some of this man’s deeper thoughts.

The tetrad can be considered an observation lens to turn upon one’s subject technology. It assumes four processes take place during each iteration of a given medium. These processes are revealed as answers to these following questions, taken from Levinson (1999):

“What aspect of society or human life does it enhance or amplify? What aspect, in favour or high prominence before the arrival of the medium in question, does it eclipse or obsolesce? What does the medium retrieve or pull back into centre stage from the shadows of obsolescence? And what does the medium reverse or flip into when it has run its course or been developed to its fullest potential?”

(Digital Mcluhan 1999: 189).

To ask each of these it is useful to transfigure our concept of Mobile AR into a more workable and fluid term: the Magic Lens, a common expression in mixed reality research. Making this change allows the exploration of the more theoretical aspects of the technology free of its machinic nature, whilst integrating a necessary element of metaphor that will serve to illustrate my points.

To begin, what does the Magic Lens amplify? AR requires the recognition of a pre-programmed real-world image in order to augment the environment correctly. It is the user who locates this target, it is important to mention. It could be said that the Magic Lens more magnifies than amplifies an aspect of the user’s environment, because like other optical tools the user must point the device towards it and look through, the difference with this Magic Lens is that one aspect of its target, one potential meaning, is privileged over all others. An arbitrary black and white marker holds the potential to mean many things to many people, but viewed through an amplifying Magic Lens it means only what the program recognises and consequently superimposes.

This superimposition necessarily obscures what lies beneath. McLuhan might recognise this as an example of obsolescence. The Magic Lens privileges virtual over real imagery, and the act of augmentation leaves physical space somewhat redundant: augmenting one’s space makes it more virtual than real. The AR target undergoes amplification, becoming the necessary foundation of the augmented reality. What is obsolesced by the Magic Lens, then, is not the target which it obscures, but everything except the target.

I am reminded of McLuhan’s Extensions of Man (1962: 13), which offers the view that in extending ourselves through our tools, we auto-amputate the aspect we seek to extend. There is a striking parallel to be drawn with amplification and obsolescence, which becomes clear when we consider that in amplifying an aspect of physical reality through a tool, we are extending sight, sound and voice through the Magic Lens to communicate in wholly new ways using The Virtual as a conduit. This act obsolesces physical reality, the nullification effectively auto-amputating the user from their footing in The Real. So where have they ‘travelled’? The Magic Lens is a window into another reality, a mixed reality where real and virtual share space. In this age of Mixed Realities, the tetrad can reveal more than previously intended: new dimensions of human interaction.

The third question in the tetrad asks what the Magic Lens retrieves that was once lost. So much new ground is gained by this technology that it would be difficult to make a claim. However, I would not hold belief in Mobile AR’s success if I didn’t recognise the exhumed, as well as the novel benefits that it offers. The Magic Lens retrieves the everyday tactility and physicality of information engagement, that which was obsolesced by other screen media such as television, the Desktop PC and the games console. The Magic Lens encourages users to interact in physicality, not virtuality. The act of actually walking somewhere to find something out, or going to see someone to play with them is retrieved. Moreover, we retrieve the sense of control over our media input that was lost by these same technologies. Information is freed into the physical world, transfiguring its meaning and offering a greater degree of manipulative power. Mixed Reality can be seen only through the one-way-glass of the Magic Lens, The Virtual cannot spill through unless we allow it to. We have seen that certain mainstream media can wholly fold themselves into reality and become an annoyance- think Internet pop-ups and mobile ringtones- through the Magic Lens we retrieve personal agency to navigate our own experience. I earlier noted that “the closer we can bring artefacts from The Virtual to The Real, the more applicable these can be in our everyday lives”; a position that resonates with my growing argument that engaging with digital information through the Magic Lens is an appropriate way to integrate and indeed exploit The Virtual as a platform for the provision of communication, leisure and information applications.

It is hard to approximate what the Magic Lens might flip into, since at this point AR is a wave that has not yet crested. I might suggest that since the medium is constrained to success in its mobile device form, its trajectory is likely entwined with that medium. So, the Magic Lens flips into whatever the mobile multimedia computer flips into. Another possibility is that the Magic Lens inspires such commercial success and industrial investment that a surge in demand for Wearable Computers shifts AR into a new form. This time, the user cannot dip in and out of Mixed Reality as they see fit, they are immersed in it whenever they wear their visor. This has connotations all of its own, but I will not expound my own views given that much cultural change must first occur to implement such a drastic shift in consumer fashions and demands. A third way for the Magic Lens to ‘flip’ might be its wider application in other media. Developments in digital ink technologies; printable folding screens; ‘cloud’ computing; interactive projector displays; multi-input touch screen devices; automotive glassware and electronic product packaging could all take advantage of the AR treatment. We could end up living far more closely with The Virtual than previously possible.

In their work The Global Village, McLuhan and Powers (1989) state that:

“The tetrad performs the function of myth in that it compresses past, present, and future into one through the power of simultaneity. The tetrad illuminates the borderline between acoustic and visual space as an arena of the spiralling repetition and replay, both of input and feedback, interlace and interface in the area of imploded circle of rebirth and metamorphosis”

(The Global Village 1989: 9)

I would be interested to hear their view on the unique “simultaneity” offered by the Magic Lens, or indeed the “metamorphosis” it would inspire, but I would argue that when applied from a Mixed Reality inter-media perspective, their outlook seems constrained to the stringent and self-involved rules of their own epistemology. Though he would be loath to admit it, Baudrillard took on McLuhan’s work as the basis of his own (Genosko, 1999; Kellner, date unknown), and made it relevant to the postmodern era. His work is cited by many academics seeking to forge a relationship to Virtual Reality in their research…

Summary So Far

In summary, Mobile AR has many paths leading to it. It is this convergence of various paths that makes a true historical appraisal of this technology difficult to achieve. However, I have highlighted facets of its contributing technologies that assist in the developing picture of the implications that Mobile AR has in store. A hybridisation of a number of different technologies, Mobile AR embodies the most gainful properties of its three core technologies: This analyst sees Mobile AR as a logical progression from VR, but recognises its ideological rather than technological founding. The hardware basis of Mobile AR stems from current mobile telephony trends that exploit the growing capabilities of Smartphone devices. The VR philosophy and the mobile technology are fused through the Internet, the means for enabling context-based, live-updating content, and housing databases of developer-built and user-generated digital objects and elements, whilst connecting users across the world.

I have shown that where the interest in VR technologies dwindled due to its limited real-world applicability, Mobile Internet also lacks in comparison to Mobile AR and its massive scope for intuitive, immersive and realistic interpretations of digital information. Wearable AR computing shares VR’s weaknesses, despite keeping the user firmly grounded in physical reality. Mobile AR offers a solution that places the power of these complex systems into a mobile telephone: the ubiquitous technology of our generation. This new platform solves several problems at once, most importantly for AR developers and interested Blue-chip parties, market readiness. Developing for Mobile AR is simply the commercially sensible thing to do, since the related industries are already making the changes required for its mass-distribution.

Like most nascent technologies, AR’s success depends on its commercial viability and financial investment, thus most sensible commercial developers of AR technologies are working on projects for the entertainment and advertising industries, where their efforts can be rewarded quickly. These small-scale projects are often simple in concept, easily grasped and thus not easily forgotten. I claim here that the first Mobile AR releases will generate early interest in the technology and entertainment markets, with the effect that press reportage and word-of-mouth behaviour assist Mobile AR’s uptake. I must be careful with my claims here however, since there is no empirical evidence to suggest that this will occur for Mobile AR. Looking at the emergence of previous technologies, however, the Internet and mobile telephony grew rapidly and to massive commercial success thanks to some strong business models and advancements in their own supporting technologies. It is strongly hoped by developers like Gameware and T-Immersion that Mobile AR can enjoy this same rapid lift-off. Both technologies gained prominence once visible in the markets thanks to a market segment called early adopters. This important group gathers their information from specialist magazine sources and word of mouth. Mobile AR developers would do well to recognise the power of this group, perhaps by offering shareware versions of their AR software that encourage a form of viral transmission that exploit text messaging.

Gameware have an interesting technique for the dissemination of their HARVEE software. They share a business interest with a Bluetooth technology firm, which has donated a prototype product the Bluetooth Push Box, which scans for local mobile devices and automatically sends files to users in acceptance. Gameware’s Push Box sends their latest demo to all visitors to their Cambridge office. This same technology could be placed in public places or commercial spaces to offer localised AR advertising, interactive tourist information, or 3D restaurant menus, perhaps.

Gameware, through its Nokia projects and HARVEE development program is well placed to gain exposure on the back of a market which is set to explode as mobile offerings become commercially viable, ‘social’, powerful, multipurpose and newsworthy. Projects like HARVEE are especially interesting in terms of their wide applicability and mass-market appeal. It is its potential as a revolutionary new medium that inspires this very series.

The Internet

The Internet, or specifically the World Wide Web, requires a limited virtuality in order to do its job. The shallow immersion offered to us by our computer screens actually serves our needs very well, since the Internet’s role in our lives is to connect, store and present information in accessible, searchable, scannable, and consistent form for millions of users to access simultaneously, to be dived in and out of quickly or to surround ourselves in the information we want. The naturally-immersive VR takes us partway towards Mobile AR, but its influence stops at the (admittedly profound) concept of real-time interaction with 3D digital images. What the Internet does is bring information to us, but VR forces us to go to it.

This is a function of the Mixed Reality Scale, and the distance of each from The Real. The closer we can bring artefacts from The Virtual to The Real, the more applicable these can be in our everyday lives. The self-sufficient realm of The Virtual does not require grounding in physical reality in order to exist, whereas the Internet and other MR media depend on The Real to operate. AR is the furthest that a virtual object can be ‘stitched into’ our reality, and in doing so we exploit our power in this realm to manipulate and interact with these digital elements to suit our own ends, as we currently do with the World Wide Web.

The wide-ranging entertainment resources offered by the Internet are having a profound effect on real-world businesses, a state of flux that Mobile AR could potentially exploit. There is a shift in the needs of consumers of late that is forcing a change in the ways that many blue-chip organisations are handling their businesses: Mobile data carriers (operators), portals, publishers, content owners and broadcasters are all seeking new content types to face up to the threat of VOIP (Voice Over Internet Protocol) – which is reducing voice traffic; and Web TV/ Internet – reducing (reduced?) TV audiences, particularly in the youth market.

T-Mobile, for example, seeks to improve on revenues through offering unique licensed mobile games, themes, ringtones and video-clips on their T-Zones Mobile Internet Portal; NBC’s hit-series ‘Heroes’ is the most downloaded show on the Internet, forcing NBC to offer exclusive online comics on their webpage, seeking to recoup advertising revenue losses through lacing the pages of these comics with advertising. Mobile AR represents a fresh landscape for these businesses to mine. It is no surprise, then, that some forward-thinking AR developers are already writing software specifically for the display of virtual advertisement billboards in built-up city areas (T-Immersion).

The Internet has changed the way we receive information about the world around us. This hyper-medium has swallowed the world’s information and media content, whilst continuing to enable the development of new and exciting offerings exclusive to the desktop user. The computing capacity required to use the Internet has in the past constrained the medium to the desktop computer, but in the ‘Information Age’ the World Wide Web is just that: World Wide.

Introduction

Augmented Reality (AR) is a theme of computer research which deals with a combination of real world and computer generated data. AR is just one version of a Mixed Reality (MR) technology, where digital and real elements are mixed to create meaning. In essence AR is any live image that has an overlay of information that augments the meaning of these images.

Digital graphics are commonly put to work in the entertainment industry, and ‘mixing realities’ is a common motif for many of today’s media forms. There are varying degrees to which The Real and The Virtual can be combined. This is illustrated in my Mixed Reality Scale:

mixed-reality-scale
My Mixed Reality Scale, a simplified version of Milgram & Kishino’s (1994) Virtuality Continuum

This is a simplified version of Milgram and Kishino’s (1994) Virtuality Continuum; simplified, because their research is purely scientific, without an explicit interest in media theory or effects, therefore not wholly applicable to my analysis. At the far left of my Mixed Reality Scale lies The Real, or physical, every-day experiential reality. For the longest time we lived solely in this realm. Then, technological innovation gave rise to the cinema, and then television. These media are located one step removed from The Real, a step closer to The Virtual, and can be considered a window on another world. This world is visually similar to our own, a fact exploited by its author to narrate believable, somewhat immersive stories. If willing, the viewer is somewhat ‘removed’ from their grounding here in physical reality, allowing them to participate in the construction of a sculpted, yet static existence. The viewer can only observe this contained reality, and cannot interact with it, a function of the viewing apparatus.

Later advancements in screen media technologies allowed the superimposition of graphical information over moving images. These were the beginnings of AR, whereby most of what is seen is real with some digital elements supplementing the image. Indeed, this simple form of AR is still in wide use today, notably in cases where extra information is required to make sense of a subject. In the case of certain televised sports, for example, a clock and a scoreboard overlay a live football match, which provides additional information that is useful to the viewer. Television viewers are already accustomed to using information that is displayed in this way:

Simple Augmented Reality, televised football matches augment meaning with digital graphics
Simple Augmented Reality, televised football matches augment meaning with digital graphics

More recently, computing and graphical power gave designers the tools to build wholly virtual environments. The Virtual is a graphical representation of raw data, and the furthest removed from physical reality on my Mixed Reality Scale. Here lies the domain of Virtual Reality (VR), a technology that uses no real elements except for the user’s human senses. The user is submersed in a seemingly separate reality, where visual, acoustic and sometimes haptic feedback serve to transpose them into this artificial, yet highly immersive space. Notice the shift from viewer to user: this is a function of the interactivity offered by digital space. VR was the forerunner to current AR research, and remains an active realm of academic study.

Computer graphics also enhanced the possibilities offered by television and cinema, forging a new point on the Mixed Reality Scale. I refer to the Augmented Virtuality (AV) approach, which uses mainly digital graphics with some real elements superimposed. For example, a newsreader reporting from a virtual studio environment is one common application. I position AV one step closer towards The Virtual to reflect the ratio of real to virtual elements:

An Augmented Virtuality, the ITV newscasters sit at a real table in a virtual studio
An Augmented Virtuality, the ITV newscasters sit at a real table in a virtual studio

There is an expansive realm between AV and VR technologies, media which offer the user wholly virtual constructions that hold potential for immersion and interactivity. I refer to the media of video games and desktop computers. Here the user manipulates visually depicted information for a purpose. These media are diametrically opposed to their counterpart on my scale, the cinema and television, because they are windows this time into a virtual world, actively encouraging (rather than denying) user interactivity to perform their function. Though operating in virtuality, the user remains grounded in The Real due to apparatus constraints.

Now, further technological advancements allow the fusion of real and virtual elements in ways not previously possible. Having traversed our way from The Real to The Virtual, we have now begun to make our way back. We are making a return to Augmented Reality, taking with us the knowledge to manipulate wholly virtual 3D objects and the computing power to integrate digital information into live, real world imagery. AR is deservedly close to The Real on my scale, because it requires physicality to function. This exciting new medium has the potential to change the way we perceive our world, forging a closer integration between our two binary worlds. It is this potential as an exciting and entirely new medium that has driven me to carry out the following work.

To begin, I address the science behind AR and its current applications. Next, I exploit an industry connection to inform a discussion of AR’s development as an entertainment medium. Then, I construct a methodology for analysis from previous academic thought on emergent technologies, whilst addressing the problems of doing so. I use this methodology to locate AR in its wider technologic, academic, social and economic context. This discussion opens ground for a deeper analysis of AR’s potential socio-cultural impact, which makes use of theories of media and communication and spatial enquiry. I conclude with a final critique that holds implications for the further analysis of Mixed Reality technology.