Learn Piano through AR

I like this:

The Projected Instrument Augmentation system (PIANO) was developed by pianists Katja Rogers and Amrei Röhlig and their colleagues at the University of Ulm in Germany. A screen attached to an electric piano has colourful blocks projected onto it that represent the notes. As the blocks of colour stream down the screen they meet the correct keyboard key at the exact moment that each one should be played.

Florian Schaub, who presented the system last month at the UbiComp conference in Zurich, Switzerland, said that users were impressed by how quickly they could play relatively well, which is hardly surprising given how easily we adapt to most screen interfaces these days.

But while there is real potential for PIANO as a self-guided teaching aid, in my view it’s the potential for a really tight feedback loop that makes this most interesting, and potentially more widely applicable.

When a piano teacher corrects a student’s mistake, they will perhaps specify one or two things that need improving, but this approach would sense each incorrect note and could provide an immediate visual response, flashing red for instance, conditioning the student to success more quickly.

via New Scientist.

Imitation & Flattery

I’ve been lucky enough to own this domain name for a number of years, and populate it with loads of content along the way. For a while, I ran a dedicated Tumblr sideblog of the same name which I have since merged into this site. More recently, I founded Digital Cortex Ltd., a formal means of handling a clutch of consultation projects. And now, this site is the front-end to my hosting business, offering virtual private server space to a few happy clients, as well as a playground for a few of the other little projects I’m working on.

Meanwhile, plenty of other people / groups / products have laid their claim to the Digital Cortex name, and I wanted to provide a quick review of them here, just for fun, but also to signpost should anyone have got lost in the ether.

[hr]

Chris Chan on Twitter

https://twitter.com/digitalcortex

A dude who’s only tweeted four times, not much else to say…
[hr]

Question Authority on YouTube

http://www.youtube.com/digitalcortex

A highly politicised channel featuring clips from documentaries and news broadcasts. It’s seemingly anti-corporate  / anti-government / anti-war. Whoever runs the channel quotes:

America will never be destroyed from the outside. If we falter, and lose our freedoms, it will be because we destroyed ourselves. (Abraham Lincoln)

Makes it all the more charming that one of his playlists is called Why I Love the 80’s, doesn’t it?
[hr]

Doc on Instagram

http://instagram.com/digitalcortex

I guess this is a tattooed guy who I assume wears glasses, eats pasta, and likes beer. He describes himself as “PhD -Piled Higher Deeper enuff said 😉
[hr]

Digital Cortex – The Movie

http://www.digital-cortex.com

A chap called Serhan Meewisse, a storyteller from the Netherlands, is making a film. He posted the below trailer to his YouTube channel:

About the film (autotranslated from Dutch):

Digital Cortex is a fiction story about Matt, who has just graduated from the film academy. Matt, the speed of the eternal accelerating system not keep after his studies. He gets his unattainable vision into depression and have thoughts about suicide. In desperation get Matt to his friend Andrew. Andrew may be the only solution for him.

A device that he can continue. system

Digital cortex makes the flow of information along the human visual cortex digital. Thoughts and fantasies are visual and are immediately visible on screen. Matt’s life is gaining momentum. Success is his second name. Because Matt is continuously working to become reality and fantasy begin to merge. Together his fantasy reality Matt is getting delusions and hallucinations. He stands for choice, back to his unhappy existence or lose himself in his imagination.

Sounds kind of cool – wonder if I’ll get an invite to the screening!
[hr]

Digital Cortex on LinkedIn

http://www.linkedin.com/company/digital-cortex

The leading social media marketing and customer experience agency. We help Business understand the power of having a marketing and communication presence through the Social medium.

Hmm… Not sure if they realise, but their web address redirects back here. Further googling suggests they might not be doing too well.
[hr]

Digital Cortex on SlideShare

http://www.slideshare.net/theopriestley/digital-cortex

A bit more info on what the above company does:


[hr]

Digital Cortex on SoundCloud

https://soundcloud.com/digital-cortex

Three guys named KyRow, Nebtune & Aaronson, who make Drum & Bass that sounds like this:

I recommend you also check out ‘Skull Fucker’, ‘nothing like a bowl of frosties’ and their remix of ‘Lana Del Rey – Born To Die’. They are also on Facebook and YouTube. Good shit, lads.
[hr]

DIGITALCORTEX.COM

Not active, but the WHOIS record indicates Brian Winn, a Professor of Telecommunication, Information Studies, and Media and Director of the Games for Entertainment and Learning (GEL) Lab at Michigan State University. We emailed a couple of years ago, and he provided some interesting backstory about the domain:

In terms of releasing digitalcortex.com, I am not interested at this point. I actually had a consulting company called Digital Cortex back in the late 90s and digitalcortex.com was the domain name for the company. Interestingly enough another company wanted the domain name and bought it for a substantial amount of money. Enough that we changed our company name and got a new domain name. Well, the story goes that a year or two later, that company went belly up in the .com crash and I bought the domain name back. I am not holding out for a big sale in the future (though I would not oppose it). I just have a sentimental connection with the domain … and I am thinking of using the name again for a new company.

Best of luck with it all, Brian.
[hr]

Digital Cortex in the US Trademark Records

COMPUTER SOFTWARE, WHETHER EMBEDDED IN ANOTHER PRODUCT OR ON A STAND-ALONE BASIS, WHICH ALLOWS THE USER OR ANOTHER COMPUTER SOFTWARE PROGRAM TO CAPTURE ANY DIGITAL CONTENT, AND TO USE, MANIPULATE, PROCESS, AND ROUTE THAT CONTENT, INCLUDING ORIGINAL ATTRIBUTES, TO AND FROM ANY COMPUTER SOFTWARE APPLICATION

The registrant was AnySoft, a tech company based in Newton, MA. From what I can dig up, their software ‘Digital Cortex 2.0′ was an approach to solving system and application interopability’ acting as a sort of software layer between various networked machines. More info here. Possibly the same guys who bought the domain from Brian Winn? Anyway, the trademark was cancelled a couple of years ago. A shame, too, because they also had this super snazzy logo:

Digital Cortex Anysoft Logo
[hr]

A few more:

Digital Cortex on Facebook

https://www.facebook.com/alamocityit

Providing IT Solutions for local non-profits and healthcare businesses.

[hr]

Digital Cortex Media

http://www.linkedin.com/pub/mark-fenger/11/43a/485

Digital Cortex is a small animation studio specializing in educational videos. We just completed work on ‘Echo’ a computer animated accent reduction tutor, prior to that we created a series of videos to accompany medical textbooks.

Sounds pretty cool, but couldn’t uncover any of their work.
[hr]

Digital Cortex by Dactilar

http://www.beatport.com/track/digital-cortex-original-mix/4307073

A deep house track, with a couple of good remixes. I really like this one.
[hr]

Digital Cortex on ‘Wandering Stan’ Blog

http://wanderingstan.com/2006-11-16/we_need_a_digital_cortex

A mini series of interesting blog posts by Stan James, starting with this.
[hr]

Digital Cortex dot IT

http://digitalcortex.it

Hi, I’m Matt Hileman, chief do-it-all at Digital Cortex […] Contact us any time with issues regarding any aspect of IT, networking, wireless, software installs and/or upgrades, PC’s, servers, storage, disaster recovery, backups and more…

Seems like there’s lots more going on behind the scenes.
[hr]

Digital Cortex dot CA

http://blog.digitalcortex.ca

This blog has up to date information on Network Security.

Last updated, Wednesday, November 3, 2010…
[hr]

Digital Cortex dot DE

http://digitalcortex.de

Another dead IT site.
[hr]

Cortex Professional Digital 4-in-1 Titanium Curling Iron

http://amzn.to/10V87la

You’d be surprised how much of my traffic comes from searches for this product!
[hr]

Cortex Digital

http://cortexdigital.com

A complete mystery…
[hr]

And that’s all I could find! Hopefully, I can remain the top site for the keyword, but if not the crown is bound to go to one of the above contenders. My money is on the trio of drum+bass producers – those search bots seem to love ’em!

3D Printed Success Kid

Shapeways is a growing repository of 3D models for purchase by 3D printing hobbyists, and like everywhere else on the web, they’ve attracted a fair few memes. But none are as inspired as this most recent entry: Success Kid!

Original Success Kid

Here’s how digital artist Ryan Kittleson sculpted a model (modelled a sculpture?) of this now seminal image using Sculptris.

The final output, once 3D printed in full colour sandstone, looks like this:

3D Printed Success Kid

Buy the 3D model from Shapeways for just €12.05, and you’ll find yourself immediately more successful as a person.

Applying McLuhan

I begin with McLuhan, whose Laws of Media or Tetrad offers greater insights for Mobile AR, sustaining and developing upon the arguments developed in my assessment of the interlinking technologies that meet in Mobile AR, whilst also providing the basis to address some of this man’s deeper thoughts.

The tetrad can be considered an observation lens to turn upon one’s subject technology. It assumes four processes take place during each iteration of a given medium. These processes are revealed as answers to these following questions, taken from Levinson (1999):

“What aspect of society or human life does it enhance or amplify? What aspect, in favour or high prominence before the arrival of the medium in question, does it eclipse or obsolesce? What does the medium retrieve or pull back into centre stage from the shadows of obsolescence? And what does the medium reverse or flip into when it has run its course or been developed to its fullest potential?”

(Digital Mcluhan 1999: 189).

To ask each of these it is useful to transfigure our concept of Mobile AR into a more workable and fluid term: the Magic Lens, a common expression in mixed reality research. Making this change allows the exploration of the more theoretical aspects of the technology free of its machinic nature, whilst integrating a necessary element of metaphor that will serve to illustrate my points.

To begin, what does the Magic Lens amplify? AR requires the recognition of a pre-programmed real-world image in order to augment the environment correctly. It is the user who locates this target, it is important to mention. It could be said that the Magic Lens more magnifies than amplifies an aspect of the user’s environment, because like other optical tools the user must point the device towards it and look through, the difference with this Magic Lens is that one aspect of its target, one potential meaning, is privileged over all others. An arbitrary black and white marker holds the potential to mean many things to many people, but viewed through an amplifying Magic Lens it means only what the program recognises and consequently superimposes.

This superimposition necessarily obscures what lies beneath. McLuhan might recognise this as an example of obsolescence. The Magic Lens privileges virtual over real imagery, and the act of augmentation leaves physical space somewhat redundant: augmenting one’s space makes it more virtual than real. The AR target undergoes amplification, becoming the necessary foundation of the augmented reality. What is obsolesced by the Magic Lens, then, is not the target which it obscures, but everything except the target.

I am reminded of McLuhan’s Extensions of Man (1962: 13), which offers the view that in extending ourselves through our tools, we auto-amputate the aspect we seek to extend. There is a striking parallel to be drawn with amplification and obsolescence, which becomes clear when we consider that in amplifying an aspect of physical reality through a tool, we are extending sight, sound and voice through the Magic Lens to communicate in wholly new ways using The Virtual as a conduit. This act obsolesces physical reality, the nullification effectively auto-amputating the user from their footing in The Real. So where have they ‘travelled’? The Magic Lens is a window into another reality, a mixed reality where real and virtual share space. In this age of Mixed Realities, the tetrad can reveal more than previously intended: new dimensions of human interaction.

The third question in the tetrad asks what the Magic Lens retrieves that was once lost. So much new ground is gained by this technology that it would be difficult to make a claim. However, I would not hold belief in Mobile AR’s success if I didn’t recognise the exhumed, as well as the novel benefits that it offers. The Magic Lens retrieves the everyday tactility and physicality of information engagement, that which was obsolesced by other screen media such as television, the Desktop PC and the games console. The Magic Lens encourages users to interact in physicality, not virtuality. The act of actually walking somewhere to find something out, or going to see someone to play with them is retrieved. Moreover, we retrieve the sense of control over our media input that was lost by these same technologies. Information is freed into the physical world, transfiguring its meaning and offering a greater degree of manipulative power. Mixed Reality can be seen only through the one-way-glass of the Magic Lens, The Virtual cannot spill through unless we allow it to. We have seen that certain mainstream media can wholly fold themselves into reality and become an annoyance- think Internet pop-ups and mobile ringtones- through the Magic Lens we retrieve personal agency to navigate our own experience. I earlier noted that “the closer we can bring artefacts from The Virtual to The Real, the more applicable these can be in our everyday lives”; a position that resonates with my growing argument that engaging with digital information through the Magic Lens is an appropriate way to integrate and indeed exploit The Virtual as a platform for the provision of communication, leisure and information applications.

It is hard to approximate what the Magic Lens might flip into, since at this point AR is a wave that has not yet crested. I might suggest that since the medium is constrained to success in its mobile device form, its trajectory is likely entwined with that medium. So, the Magic Lens flips into whatever the mobile multimedia computer flips into. Another possibility is that the Magic Lens inspires such commercial success and industrial investment that a surge in demand for Wearable Computers shifts AR into a new form. This time, the user cannot dip in and out of Mixed Reality as they see fit, they are immersed in it whenever they wear their visor. This has connotations all of its own, but I will not expound my own views given that much cultural change must first occur to implement such a drastic shift in consumer fashions and demands. A third way for the Magic Lens to ‘flip’ might be its wider application in other media. Developments in digital ink technologies; printable folding screens; ‘cloud’ computing; interactive projector displays; multi-input touch screen devices; automotive glassware and electronic product packaging could all take advantage of the AR treatment. We could end up living far more closely with The Virtual than previously possible.

In their work The Global Village, McLuhan and Powers (1989) state that:

“The tetrad performs the function of myth in that it compresses past, present, and future into one through the power of simultaneity. The tetrad illuminates the borderline between acoustic and visual space as an arena of the spiralling repetition and replay, both of input and feedback, interlace and interface in the area of imploded circle of rebirth and metamorphosis”

(The Global Village 1989: 9)

I would be interested to hear their view on the unique “simultaneity” offered by the Magic Lens, or indeed the “metamorphosis” it would inspire, but I would argue that when applied from a Mixed Reality inter-media perspective, their outlook seems constrained to the stringent and self-involved rules of their own epistemology. Though he would be loath to admit it, Baudrillard took on McLuhan’s work as the basis of his own (Genosko, 1999; Kellner, date unknown), and made it relevant to the postmodern era. His work is cited by many academics seeking to forge a relationship to Virtual Reality in their research…

Summary So Far

In summary, Mobile AR has many paths leading to it. It is this convergence of various paths that makes a true historical appraisal of this technology difficult to achieve. However, I have highlighted facets of its contributing technologies that assist in the developing picture of the implications that Mobile AR has in store. A hybridisation of a number of different technologies, Mobile AR embodies the most gainful properties of its three core technologies: This analyst sees Mobile AR as a logical progression from VR, but recognises its ideological rather than technological founding. The hardware basis of Mobile AR stems from current mobile telephony trends that exploit the growing capabilities of Smartphone devices. The VR philosophy and the mobile technology are fused through the Internet, the means for enabling context-based, live-updating content, and housing databases of developer-built and user-generated digital objects and elements, whilst connecting users across the world.

I have shown that where the interest in VR technologies dwindled due to its limited real-world applicability, Mobile Internet also lacks in comparison to Mobile AR and its massive scope for intuitive, immersive and realistic interpretations of digital information. Wearable AR computing shares VR’s weaknesses, despite keeping the user firmly grounded in physical reality. Mobile AR offers a solution that places the power of these complex systems into a mobile telephone: the ubiquitous technology of our generation. This new platform solves several problems at once, most importantly for AR developers and interested Blue-chip parties, market readiness. Developing for Mobile AR is simply the commercially sensible thing to do, since the related industries are already making the changes required for its mass-distribution.

Like most nascent technologies, AR’s success depends on its commercial viability and financial investment, thus most sensible commercial developers of AR technologies are working on projects for the entertainment and advertising industries, where their efforts can be rewarded quickly. These small-scale projects are often simple in concept, easily grasped and thus not easily forgotten. I claim here that the first Mobile AR releases will generate early interest in the technology and entertainment markets, with the effect that press reportage and word-of-mouth behaviour assist Mobile AR’s uptake. I must be careful with my claims here however, since there is no empirical evidence to suggest that this will occur for Mobile AR. Looking at the emergence of previous technologies, however, the Internet and mobile telephony grew rapidly and to massive commercial success thanks to some strong business models and advancements in their own supporting technologies. It is strongly hoped by developers like Gameware and T-Immersion that Mobile AR can enjoy this same rapid lift-off. Both technologies gained prominence once visible in the markets thanks to a market segment called early adopters. This important group gathers their information from specialist magazine sources and word of mouth. Mobile AR developers would do well to recognise the power of this group, perhaps by offering shareware versions of their AR software that encourage a form of viral transmission that exploit text messaging.

Gameware have an interesting technique for the dissemination of their HARVEE software. They share a business interest with a Bluetooth technology firm, which has donated a prototype product the Bluetooth Push Box, which scans for local mobile devices and automatically sends files to users in acceptance. Gameware’s Push Box sends their latest demo to all visitors to their Cambridge office. This same technology could be placed in public places or commercial spaces to offer localised AR advertising, interactive tourist information, or 3D restaurant menus, perhaps.

Gameware, through its Nokia projects and HARVEE development program is well placed to gain exposure on the back of a market which is set to explode as mobile offerings become commercially viable, ‘social’, powerful, multipurpose and newsworthy. Projects like HARVEE are especially interesting in terms of their wide applicability and mass-market appeal. It is its potential as a revolutionary new medium that inspires this very series.

Virtual Reality

AR is considered by some to be a logical progression of VR technologies (Liarokapis, 2006; Botella, 2005; Reitmayr & Schmalstieg, 2001), a more appropriate way to interact with information in real-time that has been granted only by recent innovations. Thus, one could consider that a full historical appraisal would pertain to VR’s own history, plus the last few years of AR developments. Though this method would certainly work for much of Wearable AR- which uses a similar device array- the same could not be said for Mobile AR, since by its nature it offers a set of properties from a wholly different paradigm: portability, connectivity and many years of mobile development exclusive of AR research come together in enhancing Mobile AR’s formal capabilities. Despite the obvious mass-market potential of this technology, most AR research continues to explore the Wearable AR paradigm. Where Mobile AR is cousin to VR, Wearable AR is sister. Most published works favour the Wearable AR approach, so if my assessment of Mobile AR is to be fair I cannot ignore its grounding in VR research.

As aforementioned, VR is the realm at the far right of my Mixed Reality Scale. To explore a Virtual Reality, users must wear a screen array on their heads that cloak the user’s vision with a wholly virtual world. These head-mounted-displays (HMD’s) serve to transpose the user into this virtual space whilst cutting them off from their physical environment:

A Virtual Reality HMD, two LCD screens occupy the wearer's field of vision
A Virtual Reality HMD, two LCD screens occupy the wearer's field of vision

The HMD’s must be connected to a wearable computer, a Ghostbusters-style device attached to the wearer’s back or waist that holds a CPU and graphics renderer. To interact with virtual objects, users must hold a joypad. Aside from being a lot to carry, this equipment is restrictive on the senses and is often expensive:

A Wearable Computer array, this particular array uses a CPU, GPS, HMD, graphics renderer, and human-interface-device
A Wearable Computer array, this particular array uses a CPU, GPS, HMD, graphics renderer, and human-interface-device

It is useful at this point to reference some thinkers in VR research, with the view to better understanding The Virtual realm and its implications for Mobile AR’s Mixed Reality approach. Writing on the different selves offered by various media, Lonsway (2002) states that:

“With the special case of the immersive VR experience, the user is (in actual fact) located in physical space within the apparatus of the technology. The computer-mediated environment suggests (in effect) a trans-location outside of this domain, but only through the construction of a subject centred on the self (I), controlling an abstract position in a graphic database of spatial coordinates. The individual, of which this newly positioned subject is but one component, is participant in a virtuality: a spatio-temporal moment of immersion, virtualised travel, physical fixity, and perhaps, depending on the technologies employed, electro-magnetic frequency exposure, lag-induced nausea, etc.”

Lonsway (2002: 65)

Despite its flaws, media representations of VR technologies throughout the eighties and early nineties such as Tron (Lisberger, 1982), Lawnmower Man (Leonard, 1992) and Johnny Mnemonic (Longo, 1995) generated plenty of audience interest and consequent industrial investment. VR hardware was produced in bulk for much of the early nineties, but it failed to become a mainstream technology largely due to a lack of capital investment in VR content, a function of the stagnant demand for expensive VR hardware (Mike Dicks of Bomb Productions: personal communication). The market for VR content collapsed, but the field remains an active contributor in certain key areas, with notable success as a commonplace training aid for military pilots (Baumann, date unknown) and as an academic tool for the study of player immersion and virtual identity (Lonsway, 2002).

Most AR development uses VR’s same array of devices: a wearable computer, input device and an HMD. The HMD is slightly different in these cases; it is transparent and contains an internal half-silvered mirror, which combines images from an LCD display with the user’s vision of the world:

An AR HMD, this model has a half-mirrored screen at 45 degrees. Above are two LCDs that reflect into the wearer's eyes whilst they can see what lies in front of them
An AR HMD, this model has a half-mirrored screen at 45 degrees. Above are two LCDs that reflect into the wearer's eyes whilst they can see what lies in front of them

 

What Wearable AR looks like, notice the very bright figure ahead. If he was darker he would not be visible
What Wearable AR looks like, notice the very bright figure ahead. If he was darker he would not be visible

There are still many limitations placed on the experience, however: first, the digital graphics must be very bright in order to stand out against natural light; second, they require the use of a cumbersome wearable computer array; third, this array is at a price-point too high for it to reach mainstream use. Much of the hardware used in Wearable AR research is bought wholesale from liquidized VR companies (Dave Mee of Gameware: personal communication), a fact representative of the backward thinking of much AR research.

In their work New Media and the Permanent Crisis of Aura Bolter et al. (2006) apply Benjamin’s work on the Aura to Mixed Reality technologies, and attempt to forge a link between VR and the Internet. This passage offers a perspective on the virtuality of the desktop computer and the World Wide Web:

“What we might call the paradigm of mixed reality is now competing successfully with what we might call ‘pure virtuality’ – the earlier paradigm that dominated interface design for decades.
In purely virtual applications, the computer defines the entire informational or perceptual environment for the user … The goal of VR is to immerse the user in a world of computer generated images and (often) computer-controlled sound. Although practical applications for VR are relatively limited, this technology still represents the next (and final?) logical step in the quest for pure virtuality. If VR were perfected and could replace the desktop GUI as the interface to an expanded World Wide Web, the result would be cyberspace.”

Bolter et al. (2006: 22)

This account offers a new platform for discussion useful for the analysis of the Internet as a component in Mobile AR: the idea that the Internet could exploit the spatial capabilities of a Virtual Reality to enhance its message. Bolter posits that this could be the logical end of a supposed “quest for pure virtuality”. I would argue that the reason VR did not succeed is the same reason that there is no “quest” to join: VR technologies lack the real-world applicability that we can easily find in reality-grounded media such as the Internet or mobile telephone.

Gameware: A Case-Study in AR Development

I have been aided in this series by a connection with Gameware Development Limited, a Cambridge-based commercial enterprise working in the entertainment industry. Gameware was formed in May 2003 from Creature Labs Ltd, developing for the PC games market which produced the market leading game in Artificial Intelligence (AI), Creatures. When Gameware was formed, a strategic decision was made to move away from retail products and into the provision of technical services. They now work within the Broadcasting and Mobile Telephony space in addition to the traditional PC market. I use this business as a platform to launch into a discussion of the developments current and past that could see AR become a part of contemporary life, and just why AR is such a promising technology.

Gameware’s first explorations into AR came when they were commissioned by the BBC to develop an AR engine and software toolkit for a television show to be aired on the CBBC channel. The toolkit lets children build virtual creatures or zooks at home on their PCs which are uploaded back to the BBC and assessed:

 

A typical Zook, screenshot taken from Gameware's Zook Kit which lets children build virtual creatures
A typical Zook, screenshot taken from Gameware's Zook Kit which lets children build virtual creatures

 

The children with the best designs are then invited to the BAMZOOKi studio to have their virtual creatures compete against each other in a purpose-built arena comprised of real and digital elements. The zooks themselves are not real, of course, but the children can see silhouettes of digital action projected onto the arena in front of them. Each camera has an auxiliary camera pointed at AR markers on the studio ceiling, meaning each camera’s exact location in relation to the simulated events can be processed in real time. The digital creatures are stitched into the footage, and are then navigable and zoomable as if they were real studio elements. No post-production is necessary. BAMZOOKi is currently in its fourth series, with repeats aired daily:

 

BAMZOOKi, BBC's AR game show where children’s zooks compete in a studio environment
BAMZOOKi, BBC's AR game show where children’s zooks compete in a studio environment

 

BAMZOOKi has earned Childrens BBC some of its highest viewing figures (up to 1.2 million for the Monday shows on BBC1 and around 100,000 for each of the 20 episodes shown on digital Children’s BBC), which represents a massive milestone for AR and its emergence as a mainstream media technology. The evidence shows that there is a willing audience already receptive to contemporary AR applications. Further to the viewing figures the commercial arm of the BBC, BBC Worldwide, is in talks to distribute the BAMZOOKi format across the world, with its AR engine as its biggest USP. Gameware hold the rights required to further develop their BAMZOOKi intellectual property (IP), and are currently working on a stripped down version of their complex AR engine for the mobile telephony market.

I argue, however, that Broadcast AR is not the central application of AR technologies, merely an enabler for its wider applicability in other, more potent forms of media. Mobile AR offers a new channel of distribution for a variety of media forms, and it is its flexibility as a platform that could see it become a mainstream medium. Its successful deployment and reception is reliant on a number of cooperating factors; the innovation of its developers and the quality of the actual product being just part of the overall success the imminent release.

As well as their AR research, Gameware creates innovative digital games based on their Creatures AI engine. They recently produced Creebies; a digital game for Nokia Corp. Creebies is one of the first 3D games which incorporates AI for mobile phones. Gameware’s relationship with Nokia was strengthened when Nokia named them Pro-Developers. This is a title that grants Gameware a certain advantage: access to prototype mobile devices, hardware specifications, programming tools and their own Symbian operating system (Symbian OS) for mobile platforms. It was this development in combination with their experiences with BAMZOOKi and a long-standing collaboration with Cambridge University which has led to the idea for their HARVEE project. HARVEE stands for Handheld Augmented Reality Virtual Entertainment Engine.

Their product allows full 3D virtual objects to co-exist with real objects in physical space, viewed through the AR Device, which are animated, interactive and navigable, meaning the software can make changes to the objects as required, providing much space for interesting digital content. The applications of such a tool range from simple toy products; advertising outlets; tourist information or multiplayer game applications; to complex visualisations of weather movements; collaborating on engineering or architectural problems; or even implementing massive city-wide databases of knowledge where users might ‘tag’ buildings with their own graphical labels that might be useful to other AR users. There is rich potential here.

In HARVEE, Gameware attempt to surmount the limitations of current AR hardware in order to deliver the latest in interactive reality imaging to a new and potentially huge user base. Indeed, Nokia’s own market research suggests that AR-capable Smartphones will be owned by 25% of all consumers by 2009 (Nokia Research Centre Cambridge, non-public document). Mobile AR of the type HARVEE hopes to achieve represents not only a significant technical challenge, but also a potentially revolutionary step in mobile telephony technologies and the entertainment industry.

Gameware’s HARVEE project is essentially the creation of an SDK (Software Development Kit) which will allow developers to create content deliverable via their own Mobile AR applications. The SDK is written with the developer in mind, and does the difficult work of augmenting images and information related to the content. This simple yet flexible approach opens up a space for various types of AR content created at low cost for developers and end-users. I see Mobile AR’s visibility on the open market the only impediment to its success, and I believe that its simplicity of concept could see it become a participatory mass-medium of user-generated and mainstream commercial content.