Tag Archives | graphic

Cinemetrics: Interactive Movie Infographics

Cinemetrics is the fascinating result of Frederic Brodbeck‘s bachelor graduation project at The Royal Academy of Art in the Netherlands.

poster 3 | Cinemetrics: Interactive Movie Infographics | Digital CortexAs a graphic designer, Brodbeck is drawn to particular style details, but as a generative coder he’s interested in exploring the role for graphic design in analysing these same details.

He picked the medium of film as his ‘data-set’ and came up with something actually very unique: rather than analysing the meta-data around a film (i.e. from IMDB), he’s using movies themselves.

The project seeks to ‘fingerprint’ films (a bit like the recent moviebarcode site) and turn them into interactive models. The models can be manipulated to allow users to identify differences or trends in the graphics via a sexy looking interface, all of which he’s now open-sourced on GitHub.

Here’s a demo:

Brodbeck defines the project as “an experiment to find out if the data that is inherent in the movie can be used to make something visible that otherwise would remain unnoticed.” It’s a really interesting area for academic inquiry, one which he set out the following goals:

Measuring and visualizing movie data to reveal the characteristics of movies and to create some sort of unique “fingerprint” for them.

Extracting and analyzing information – such as the editing structure, use of colors, speech or motion – and transform them into graphic representations, so that movies can be seen as a whole and easily be interpreted or compared.

Working experimentally and presenting the work both in print and digital media.

A side effect is that the system he’s built is great at comparing films, so as to see differences between originals and remakes; within similar genres; among a string of sequels, similar filmmaking styles or certain directors.

What’s great is the system is actually useful. It’s an infographic engine for film-buffs, and we know how popular those are, don’t we?!

Frederick, I look forward to the sequel!

Virtual Reality

This entry is part 8 in the series An Opus to AR

AR is considered by some to be a logical progression of VR technologies (Liarokapis, 2006; Botella, 2005; Reitmayr & Schmalstieg, 2001), a more appropriate way to interact with information in real-time that has been granted only by recent innovations. Thus, one could consider that a full historical appraisal would pertain to VR’s own history, plus the last few years of AR developments. Though this method would certainly work for much of Wearable AR- which uses a similar device array- the same could not be said for Mobile AR, since by its nature it offers a set of properties from a wholly different paradigm: portability, connectivity and many years of mobile development exclusive of AR research come together in enhancing Mobile AR’s formal capabilities. Despite the obvious mass-market potential of this technology, most AR research continues to explore the Wearable AR paradigm. Where Mobile AR is cousin to VR, Wearable AR is sister. Most published works favour the Wearable AR approach, so if my assessment of Mobile AR is to be fair I cannot ignore its grounding in VR research.

As aforementioned, VR is the realm at the far right of my Mixed Reality Scale. To explore a Virtual Reality, users must wear a screen array on their heads that cloak the user’s vision with a wholly virtual world. These head-mounted-displays (HMD’s) serve to transpose the user into this virtual space whilst cutting them off from their physical environment:

untitled | Virtual Reality | Digital Cortex

A Virtual Reality HMD, two LCD screens occupy the wearer's field of vision

The HMD’s must be connected to a wearable computer, a Ghostbusters-style device attached to the wearer’s back or waist that holds a CPU and graphics renderer. To interact with virtual objects, users must hold a joypad. Aside from being a lot to carry, this equipment is restrictive on the senses and is often expensive:

untitled1 | Virtual Reality | Digital Cortex

A Wearable Computer array, this particular array uses a CPU, GPS, HMD, graphics renderer, and human-interface-device

It is useful at this point to reference some thinkers in VR research, with the view to better understanding The Virtual realm and its implications for Mobile AR’s Mixed Reality approach. Writing on the different selves offered by various media, Lonsway (2002) states that:

“With the special case of the immersive VR experience, the user is (in actual fact) located in physical space within the apparatus of the technology. The computer-mediated environment suggests (in effect) a trans-location outside of this domain, but only through the construction of a subject centred on the self (I), controlling an abstract position in a graphic database of spatial coordinates. The individual, of which this newly positioned subject is but one component, is participant in a virtuality: a spatio-temporal moment of immersion, virtualised travel, physical fixity, and perhaps, depending on the technologies employed, electro-magnetic frequency exposure, lag-induced nausea, etc.”

Lonsway (2002: 65)

Despite its flaws, media representations of VR technologies throughout the eighties and early nineties such as Tron (Lisberger, 1982), Lawnmower Man (Leonard, 1992) and Johnny Mnemonic (Longo, 1995) generated plenty of audience interest and consequent industrial investment. VR hardware was produced in bulk for much of the early nineties, but it failed to become a mainstream technology largely due to a lack of capital investment in VR content, a function of the stagnant demand for expensive VR hardware (Mike Dicks of Bomb Productions: personal communication). The market for VR content collapsed, but the field remains an active contributor in certain key areas, with notable success as a commonplace training aid for military pilots (Baumann, date unknown) and as an academic tool for the study of player immersion and virtual identity (Lonsway, 2002).

Most AR development uses VR’s same array of devices: a wearable computer, input device and an HMD. The HMD is slightly different in these cases; it is transparent and contains an internal half-silvered mirror, which combines images from an LCD display with the user’s vision of the world:

untitled2 | Virtual Reality | Digital Cortex

An AR HMD, this model has a half-mirrored screen at 45 degrees. Above are two LCDs that reflect into the wearer's eyes whilst they can see what lies in front of them

 

untitled3 | Virtual Reality | Digital Cortex

What Wearable AR looks like, notice the very bright figure ahead. If he was darker he would not be visible

There are still many limitations placed on the experience, however: first, the digital graphics must be very bright in order to stand out against natural light; second, they require the use of a cumbersome wearable computer array; third, this array is at a price-point too high for it to reach mainstream use. Much of the hardware used in Wearable AR research is bought wholesale from liquidized VR companies (Dave Mee of Gameware: personal communication), a fact representative of the backward thinking of much AR research.

In their work New Media and the Permanent Crisis of Aura Bolter et al. (2006) apply Benjamin’s work on the Aura to Mixed Reality technologies, and attempt to forge a link between VR and the Internet. This passage offers a perspective on the virtuality of the desktop computer and the World Wide Web:

“What we might call the paradigm of mixed reality is now competing successfully with what we might call ‘pure virtuality’ – the earlier paradigm that dominated interface design for decades.
In purely virtual applications, the computer defines the entire informational or perceptual environment for the user … The goal of VR is to immerse the user in a world of computer generated images and (often) computer-controlled sound. Although practical applications for VR are relatively limited, this technology still represents the next (and final?) logical step in the quest for pure virtuality. If VR were perfected and could replace the desktop GUI as the interface to an expanded World Wide Web, the result would be cyberspace.”

Bolter et al. (2006: 22)

This account offers a new platform for discussion useful for the analysis of the Internet as a component in Mobile AR: the idea that the Internet could exploit the spatial capabilities of a Virtual Reality to enhance its message. Bolter posits that this could be the logical end of a supposed “quest for pure virtuality”. I would argue that the reason VR did not succeed is the same reason that there is no “quest” to join: VR technologies lack the real-world applicability that we can easily find in reality-grounded media such as the Internet or mobile telephone.