Web Discoveries for June 24th

These are my del.icio.us links for June 24th

Where is freedimensional?

You’ve probably read about Google Latitude, and maybe even used it yourself. I’ve been using it mostly without meaning to, because I activated the service on my N95’s Google Maps and the bloody thing never turns off. Here’s where I am right now:

Locative technologies are a growing area of interest for me. I believe that GPS, cell-tower triangulation and even good old Bluetooth will play a large part in making cloud-computing extra-relevant to consumers.

I know that people get a bit funny with the blend of real locations and virtual space (see Google Street View debacle) but once we’re all using our next-gen pieces of UI, your networked device could begin to act as a portal to new layers of information useful to you about the city, street, or shop you are in.

I am talking about location-based advertising. An implementational nightmare, but it is foreseeable that Semantic technologies could serve geographically relevant messages, charging advertisers on a cost per impact basis. Google kind of do this with their local search results. It’s a bit shit at the moment though.

The nearest we have to the kind of next-gen solution I’m thinking of is lastminute.com’s free service NRU, available on the Android OS. It lets you scan around your environment with your phone acting as a viewfinder, where cinemas, restaurants and theatres are overlaid in a sonar-like interface. These services pay a small amount to lastminute.com on an affiliate basis, or are paid inclusions:

NRU for Android, from lastminute on the G1

There’s one locative service I’m disappointed never took off in the UK, despite being around for a while. BrightKite is a kind of location-based Twitter, and it had real promise until Google came stomping all over them with the release of Latitude.

If I were to ‘check in’ at The Queens Larder on Russell Square, BrightKite users would see my marker and message on a map of the area, as well as other people checked in nearby. The potential for social interaction is high, because through using the service one feels proximity with other users.

With all this in mind, I’d like my readers to ‘feel closer’ to me, so as well as in this post I’ll be placing my Latitude Location Badge on my Contact Page. If you’re in the vicinity, go ahead and either serve me an advert or say hello. I won’t mind which.

Virtual Reality

AR is considered by some to be a logical progression of VR technologies (Liarokapis, 2006; Botella, 2005; Reitmayr & Schmalstieg, 2001), a more appropriate way to interact with information in real-time that has been granted only by recent innovations. Thus, one could consider that a full historical appraisal would pertain to VR’s own history, plus the last few years of AR developments. Though this method would certainly work for much of Wearable AR- which uses a similar device array- the same could not be said for Mobile AR, since by its nature it offers a set of properties from a wholly different paradigm: portability, connectivity and many years of mobile development exclusive of AR research come together in enhancing Mobile AR’s formal capabilities. Despite the obvious mass-market potential of this technology, most AR research continues to explore the Wearable AR paradigm. Where Mobile AR is cousin to VR, Wearable AR is sister. Most published works favour the Wearable AR approach, so if my assessment of Mobile AR is to be fair I cannot ignore its grounding in VR research.

As aforementioned, VR is the realm at the far right of my Mixed Reality Scale. To explore a Virtual Reality, users must wear a screen array on their heads that cloak the user’s vision with a wholly virtual world. These head-mounted-displays (HMD’s) serve to transpose the user into this virtual space whilst cutting them off from their physical environment:

A Virtual Reality HMD, two LCD screens occupy the wearer's field of vision
A Virtual Reality HMD, two LCD screens occupy the wearer's field of vision

The HMD’s must be connected to a wearable computer, a Ghostbusters-style device attached to the wearer’s back or waist that holds a CPU and graphics renderer. To interact with virtual objects, users must hold a joypad. Aside from being a lot to carry, this equipment is restrictive on the senses and is often expensive:

A Wearable Computer array, this particular array uses a CPU, GPS, HMD, graphics renderer, and human-interface-device
A Wearable Computer array, this particular array uses a CPU, GPS, HMD, graphics renderer, and human-interface-device

It is useful at this point to reference some thinkers in VR research, with the view to better understanding The Virtual realm and its implications for Mobile AR’s Mixed Reality approach. Writing on the different selves offered by various media, Lonsway (2002) states that:

“With the special case of the immersive VR experience, the user is (in actual fact) located in physical space within the apparatus of the technology. The computer-mediated environment suggests (in effect) a trans-location outside of this domain, but only through the construction of a subject centred on the self (I), controlling an abstract position in a graphic database of spatial coordinates. The individual, of which this newly positioned subject is but one component, is participant in a virtuality: a spatio-temporal moment of immersion, virtualised travel, physical fixity, and perhaps, depending on the technologies employed, electro-magnetic frequency exposure, lag-induced nausea, etc.”

Lonsway (2002: 65)

Despite its flaws, media representations of VR technologies throughout the eighties and early nineties such as Tron (Lisberger, 1982), Lawnmower Man (Leonard, 1992) and Johnny Mnemonic (Longo, 1995) generated plenty of audience interest and consequent industrial investment. VR hardware was produced in bulk for much of the early nineties, but it failed to become a mainstream technology largely due to a lack of capital investment in VR content, a function of the stagnant demand for expensive VR hardware (Mike Dicks of Bomb Productions: personal communication). The market for VR content collapsed, but the field remains an active contributor in certain key areas, with notable success as a commonplace training aid for military pilots (Baumann, date unknown) and as an academic tool for the study of player immersion and virtual identity (Lonsway, 2002).

Most AR development uses VR’s same array of devices: a wearable computer, input device and an HMD. The HMD is slightly different in these cases; it is transparent and contains an internal half-silvered mirror, which combines images from an LCD display with the user’s vision of the world:

An AR HMD, this model has a half-mirrored screen at 45 degrees. Above are two LCDs that reflect into the wearer's eyes whilst they can see what lies in front of them
An AR HMD, this model has a half-mirrored screen at 45 degrees. Above are two LCDs that reflect into the wearer's eyes whilst they can see what lies in front of them


What Wearable AR looks like, notice the very bright figure ahead. If he was darker he would not be visible
What Wearable AR looks like, notice the very bright figure ahead. If he was darker he would not be visible

There are still many limitations placed on the experience, however: first, the digital graphics must be very bright in order to stand out against natural light; second, they require the use of a cumbersome wearable computer array; third, this array is at a price-point too high for it to reach mainstream use. Much of the hardware used in Wearable AR research is bought wholesale from liquidized VR companies (Dave Mee of Gameware: personal communication), a fact representative of the backward thinking of much AR research.

In their work New Media and the Permanent Crisis of Aura Bolter et al. (2006) apply Benjamin’s work on the Aura to Mixed Reality technologies, and attempt to forge a link between VR and the Internet. This passage offers a perspective on the virtuality of the desktop computer and the World Wide Web:

“What we might call the paradigm of mixed reality is now competing successfully with what we might call ‘pure virtuality’ – the earlier paradigm that dominated interface design for decades.
In purely virtual applications, the computer defines the entire informational or perceptual environment for the user … The goal of VR is to immerse the user in a world of computer generated images and (often) computer-controlled sound. Although practical applications for VR are relatively limited, this technology still represents the next (and final?) logical step in the quest for pure virtuality. If VR were perfected and could replace the desktop GUI as the interface to an expanded World Wide Web, the result would be cyberspace.”

Bolter et al. (2006: 22)

This account offers a new platform for discussion useful for the analysis of the Internet as a component in Mobile AR: the idea that the Internet could exploit the spatial capabilities of a Virtual Reality to enhance its message. Bolter posits that this could be the logical end of a supposed “quest for pure virtuality”. I would argue that the reason VR did not succeed is the same reason that there is no “quest” to join: VR technologies lack the real-world applicability that we can easily find in reality-grounded media such as the Internet or mobile telephone.

Constructing A Methodology

Mobile AR is still highly prototypical, and has not received much previous academic attention thus far. A deep analysis of this technology and its implications requires a specially developed methodology, a methodology which acknowledges the pre-release status of the technology, and recognises that Mobile AR represents a fusion of a number of different media technologies. Given that there is no fixed point of entry for analysis, I look to academics writing on the subject of other radical and emergent technologies that (at the time of publishing) were yet to reach the mainstream.

At this early stage of the product cycle there is an interesting interplay between fields. This interplay is assessed in Digital Play: The Interaction of Technology, Culture, and Marketing by Kline et al. (2003), and it raises some arguments useful to the further analysis of Mobile AR as a cultural artefact. One of its lessons is that assessing new technologies is fraught with a long-standing academic and cultural issue: the problem of technological determinism. The theory is that new technologies drive social, political and cultural changes, and that the perceived linearity of technical progression is somehow representative of humanity’s own progression, parallel trajectories dependent on the other’s existence. The weaknesses arise when one assigns these same values to their own assessments, which isolate the subject technology from its wider context. Indeed, it is often forgotten that in order to achieve these innovations, social, economic, political and cultural forces have all worked in collusion. Digital Play (Kline et al., 2003), quotes Leiss (1990) in an especially provoking summarisation:

“Strictly speaking, there are no imperatives in technology. The chief mistake … is to isolate one aspect (technology) of a dense network of social interactions, to consider it in abstraction from all the rest, and then relate it back to that network as an allegedly independent actor.”

Leiss (1990: 2) in Kline et al. (2003:8)

Leiss’ point is that academic enquiry should seek to observe its subjects in the light of their true context. He highlights the importance of the “network” as the source of each technology, denying the idea that modern culture is ‘Under Technology’s Thumb’ (Leiss, 1990). A personal observation is that within the “network” also lie the forerunning technologies that gave rise to the newest developments, and the means to develop them further. This idea recalls McLuhan, who to the detriment of Leiss’ argument, was sometimes known as “the most famous media technological determinist” (Straubhaar & LaRose, 2005: 51) who, in reference to man’s “perpetually … modifying his technology” McLuhan (1964: 46) states that “man becomes, as it were, the sex organs of the machine world, as the bee of the plant world, enabling it to fecundate and to evolve ever new forms”. He hereby suggests a hidden complexity to human-technologic interactions, a complexity I return to later in this work. For now though, these thinkers’ opposing perspectives make a further analysis rather difficult. I recognise McLuhan’s view that there are forces at work within the “network” that need to be addressed, but accept Leiss’ view that I should view the web of interactions as a whole, in order that technological determinism cannot skew my findings. I must reconcile these perspectives in my own approach. Seeking to refrain from any dangerously deterministic hyperbole, I continue the assessment of Mobile AR as an emergent and potentially “network” enhancing new medium, but from which determinist-proof methodology?

Digital Play, though referring mainly to the digital games industry, looks into the complex dynamics between developer, distributor, market and economy. Its critical evaluation of this medium adopts a methodology that suits my own AR enquiries:

“The story of the emergence of interactive play and of its uncertain crisis-filled transformation into one of the premier industries of digital globalized capital is both exciting and revelatory. Historical perspective is vital to critical understanding. We strongly agree with Williams that it is impossible to diagnose the cultural impact of a new medium until the specific institutional circumstances of its development are understood. Moreover, critical media analysis requires historical perspective in order to argue against the deterministic view that technology “is a self-acting force which creates new ways of life [Williams, 1992: 8]”.

Kline et al. (2003:79)

Now, since Mobile AR is such a new and radical technology, it is best considered in terms of other, previously radical technologies and their own timely impact. This approach recognises the emergent nature of Mobile AR technology and the lack of current research in the field, but also allows the opportunity to reflect on the implications of this technology in a relatively safe way: that is, through the lessons learned from full-fledged media. I propose that a useful lens through which to view Mobile AR is offered by an historical analysis of Mobile AR’s better established component media, with a view to producing an understanding of the implications AR holds for society. This approach allows AR to be considered as a product of a convergence of paths: technologic, academic, social and economic, providing the basis for deeper analysis as a consequence.

Gameware: A Case-Study in AR Development

I have been aided in this series by a connection with Gameware Development Limited, a Cambridge-based commercial enterprise working in the entertainment industry. Gameware was formed in May 2003 from Creature Labs Ltd, developing for the PC games market which produced the market leading game in Artificial Intelligence (AI), Creatures. When Gameware was formed, a strategic decision was made to move away from retail products and into the provision of technical services. They now work within the Broadcasting and Mobile Telephony space in addition to the traditional PC market. I use this business as a platform to launch into a discussion of the developments current and past that could see AR become a part of contemporary life, and just why AR is such a promising technology.

Gameware’s first explorations into AR came when they were commissioned by the BBC to develop an AR engine and software toolkit for a television show to be aired on the CBBC channel. The toolkit lets children build virtual creatures or zooks at home on their PCs which are uploaded back to the BBC and assessed:


A typical Zook, screenshot taken from Gameware's Zook Kit which lets children build virtual creatures
A typical Zook, screenshot taken from Gameware's Zook Kit which lets children build virtual creatures


The children with the best designs are then invited to the BAMZOOKi studio to have their virtual creatures compete against each other in a purpose-built arena comprised of real and digital elements. The zooks themselves are not real, of course, but the children can see silhouettes of digital action projected onto the arena in front of them. Each camera has an auxiliary camera pointed at AR markers on the studio ceiling, meaning each camera’s exact location in relation to the simulated events can be processed in real time. The digital creatures are stitched into the footage, and are then navigable and zoomable as if they were real studio elements. No post-production is necessary. BAMZOOKi is currently in its fourth series, with repeats aired daily:


BAMZOOKi, BBC's AR game show where children’s zooks compete in a studio environment
BAMZOOKi, BBC's AR game show where children’s zooks compete in a studio environment


BAMZOOKi has earned Childrens BBC some of its highest viewing figures (up to 1.2 million for the Monday shows on BBC1 and around 100,000 for each of the 20 episodes shown on digital Children’s BBC), which represents a massive milestone for AR and its emergence as a mainstream media technology. The evidence shows that there is a willing audience already receptive to contemporary AR applications. Further to the viewing figures the commercial arm of the BBC, BBC Worldwide, is in talks to distribute the BAMZOOKi format across the world, with its AR engine as its biggest USP. Gameware hold the rights required to further develop their BAMZOOKi intellectual property (IP), and are currently working on a stripped down version of their complex AR engine for the mobile telephony market.

I argue, however, that Broadcast AR is not the central application of AR technologies, merely an enabler for its wider applicability in other, more potent forms of media. Mobile AR offers a new channel of distribution for a variety of media forms, and it is its flexibility as a platform that could see it become a mainstream medium. Its successful deployment and reception is reliant on a number of cooperating factors; the innovation of its developers and the quality of the actual product being just part of the overall success the imminent release.

As well as their AR research, Gameware creates innovative digital games based on their Creatures AI engine. They recently produced Creebies; a digital game for Nokia Corp. Creebies is one of the first 3D games which incorporates AI for mobile phones. Gameware’s relationship with Nokia was strengthened when Nokia named them Pro-Developers. This is a title that grants Gameware a certain advantage: access to prototype mobile devices, hardware specifications, programming tools and their own Symbian operating system (Symbian OS) for mobile platforms. It was this development in combination with their experiences with BAMZOOKi and a long-standing collaboration with Cambridge University which has led to the idea for their HARVEE project. HARVEE stands for Handheld Augmented Reality Virtual Entertainment Engine.

Their product allows full 3D virtual objects to co-exist with real objects in physical space, viewed through the AR Device, which are animated, interactive and navigable, meaning the software can make changes to the objects as required, providing much space for interesting digital content. The applications of such a tool range from simple toy products; advertising outlets; tourist information or multiplayer game applications; to complex visualisations of weather movements; collaborating on engineering or architectural problems; or even implementing massive city-wide databases of knowledge where users might ‘tag’ buildings with their own graphical labels that might be useful to other AR users. There is rich potential here.

In HARVEE, Gameware attempt to surmount the limitations of current AR hardware in order to deliver the latest in interactive reality imaging to a new and potentially huge user base. Indeed, Nokia’s own market research suggests that AR-capable Smartphones will be owned by 25% of all consumers by 2009 (Nokia Research Centre Cambridge, non-public document). Mobile AR of the type HARVEE hopes to achieve represents not only a significant technical challenge, but also a potentially revolutionary step in mobile telephony technologies and the entertainment industry.

Gameware’s HARVEE project is essentially the creation of an SDK (Software Development Kit) which will allow developers to create content deliverable via their own Mobile AR applications. The SDK is written with the developer in mind, and does the difficult work of augmenting images and information related to the content. This simple yet flexible approach opens up a space for various types of AR content created at low cost for developers and end-users. I see Mobile AR’s visibility on the open market the only impediment to its success, and I believe that its simplicity of concept could see it become a participatory mass-medium of user-generated and mainstream commercial content.


Augmented Reality (AR) is a theme of computer research which deals with a combination of real world and computer generated data. AR is just one version of a Mixed Reality (MR) technology, where digital and real elements are mixed to create meaning. In essence AR is any live image that has an overlay of information that augments the meaning of these images.

Digital graphics are commonly put to work in the entertainment industry, and ‘mixing realities’ is a common motif for many of today’s media forms. There are varying degrees to which The Real and The Virtual can be combined. This is illustrated in my Mixed Reality Scale:

My Mixed Reality Scale, a simplified version of Milgram & Kishino’s (1994) Virtuality Continuum

This is a simplified version of Milgram and Kishino’s (1994) Virtuality Continuum; simplified, because their research is purely scientific, without an explicit interest in media theory or effects, therefore not wholly applicable to my analysis. At the far left of my Mixed Reality Scale lies The Real, or physical, every-day experiential reality. For the longest time we lived solely in this realm. Then, technological innovation gave rise to the cinema, and then television. These media are located one step removed from The Real, a step closer to The Virtual, and can be considered a window on another world. This world is visually similar to our own, a fact exploited by its author to narrate believable, somewhat immersive stories. If willing, the viewer is somewhat ‘removed’ from their grounding here in physical reality, allowing them to participate in the construction of a sculpted, yet static existence. The viewer can only observe this contained reality, and cannot interact with it, a function of the viewing apparatus.

Later advancements in screen media technologies allowed the superimposition of graphical information over moving images. These were the beginnings of AR, whereby most of what is seen is real with some digital elements supplementing the image. Indeed, this simple form of AR is still in wide use today, notably in cases where extra information is required to make sense of a subject. In the case of certain televised sports, for example, a clock and a scoreboard overlay a live football match, which provides additional information that is useful to the viewer. Television viewers are already accustomed to using information that is displayed in this way:

Simple Augmented Reality, televised football matches augment meaning with digital graphics
Simple Augmented Reality, televised football matches augment meaning with digital graphics

More recently, computing and graphical power gave designers the tools to build wholly virtual environments. The Virtual is a graphical representation of raw data, and the furthest removed from physical reality on my Mixed Reality Scale. Here lies the domain of Virtual Reality (VR), a technology that uses no real elements except for the user’s human senses. The user is submersed in a seemingly separate reality, where visual, acoustic and sometimes haptic feedback serve to transpose them into this artificial, yet highly immersive space. Notice the shift from viewer to user: this is a function of the interactivity offered by digital space. VR was the forerunner to current AR research, and remains an active realm of academic study.

Computer graphics also enhanced the possibilities offered by television and cinema, forging a new point on the Mixed Reality Scale. I refer to the Augmented Virtuality (AV) approach, which uses mainly digital graphics with some real elements superimposed. For example, a newsreader reporting from a virtual studio environment is one common application. I position AV one step closer towards The Virtual to reflect the ratio of real to virtual elements:

An Augmented Virtuality, the ITV newscasters sit at a real table in a virtual studio
An Augmented Virtuality, the ITV newscasters sit at a real table in a virtual studio

There is an expansive realm between AV and VR technologies, media which offer the user wholly virtual constructions that hold potential for immersion and interactivity. I refer to the media of video games and desktop computers. Here the user manipulates visually depicted information for a purpose. These media are diametrically opposed to their counterpart on my scale, the cinema and television, because they are windows this time into a virtual world, actively encouraging (rather than denying) user interactivity to perform their function. Though operating in virtuality, the user remains grounded in The Real due to apparatus constraints.

Now, further technological advancements allow the fusion of real and virtual elements in ways not previously possible. Having traversed our way from The Real to The Virtual, we have now begun to make our way back. We are making a return to Augmented Reality, taking with us the knowledge to manipulate wholly virtual 3D objects and the computing power to integrate digital information into live, real world imagery. AR is deservedly close to The Real on my scale, because it requires physicality to function. This exciting new medium has the potential to change the way we perceive our world, forging a closer integration between our two binary worlds. It is this potential as an exciting and entirely new medium that has driven me to carry out the following work.

To begin, I address the science behind AR and its current applications. Next, I exploit an industry connection to inform a discussion of AR’s development as an entertainment medium. Then, I construct a methodology for analysis from previous academic thought on emergent technologies, whilst addressing the problems of doing so. I use this methodology to locate AR in its wider technologic, academic, social and economic context. This discussion opens ground for a deeper analysis of AR’s potential socio-cultural impact, which makes use of theories of media and communication and spatial enquiry. I conclude with a final critique that holds implications for the further analysis of Mixed Reality technology.