Aurasma vs. Blippar

I’ve written about Augmented Reality extensively in the past, but since the days of immersing myself in the purely theoretical potential for the medium, a few key players have rooted themselves in a very commercial reality that is now powering the fledgling industry.

And while B2B-focused vendors such as ViewAR remain behind the scenes, the likes of Aurasma and Blippar have soared in notoriety thanks to some quite excellent packaging and an impressive sales proposition. They are the standard bearers, at least in the eyes of the public.

I like Aurasma. But I also like Blippar. So which is better? Well, let’s find out… Here are some provocations I’ve been toying around with. See if it helps you decide, and let me know which side you fall on in the comments.

[twocol_one][dropcap]A[/dropcap]urasma has more technological power behind it. They have (supposedly) incorporated academic research into their proprietary tech and have a heritage in pattern recognition systems – remember their core business though: integrating with business critical processes and then slowly ramping up prices. They do this across all other Autonomy products! Also consider they are an HP property, whose business is hardware, not software. I believe Aurasma are only using this period of their lifespan to learn what does and doesn’t work, get better at it, gain status, equip users to enjoy AR, and then develop a mobile chipset (literally, hardware optimised for AR) that can be embedded in mobile devices, making HP buckets of royalties. They are chasing install base, but not because they want advertising bucks: they want to whitelabel their tech (i.e. Tesco, Heat & GQ) and then disappear into the background.[/twocol_one]

[twocol_one_last][dropcap]B[/dropcap]lippar have a proprietary AR engine, but are listed as using Qualcomm’s Vuforia engine – which is free to use. They seem focused on innovations in the augmented layer. Reading their interviews, they speak of AR not as a tech, platform or medium, but as a kind of magic campaign juice: stuff that reveals they are extremely focused on delivering a good consumer experience paid for by advertisers, with them as connective tissue. To this end, they too are chasing install base, but ultimately they have a different goal in mind. Being Qualcomm-backed, their future is in flexing their creative muscles and helping make AR a mass market medium through normalising behaviour. Big rivals: Aurasma in the short term, but I imagine that one day, Aurasma will revert back to being a tech platform, and companies like Blippar will provide the surface experience: where good content, not tech, will be what sells.[/twocol_one_last]

So what do you reckon – A or B?

Matthias Müller’s Particle Art

There’s this guy called Matthias Müller, and he makes beautiful abstractions out of virtual dust on his supercomputer. He’s some kind of motion-art superhero, probably sent to us from the exploding Planet 3DS Max by his scientist parents.

In this post I’ve picked out a few examples of his work, because as well as being simply gorgeous viewing material, they’re great examples of what’s possible with a few gigs of RAM, a graphics card and some imagination.

Probably my favourite due to it’s relative simplicity, this tech demo plays with texture in surprising ways:

This next one is so epic! Like an underwater fireworks show of electric choreographed jellyfish, or something…

Watch as millions of particles merge and blend with infinite complexity in this piece of seemingly generative fludity:

This final clip is almost a love story. Watch as two swirling masses collide, explode and dance in time with the music:

An undoubtedly talented guy, Matthias has done commercial work for Honda and Vodafone (as featured last year).  His YouTube channel is certainly worth a look, as are his lovely image renders on CGPortfolio.

I can barely get the most out of MSPaint, however…


I set out to assess the implications of a wholly new medium, one which had received little academic attention written from a media theoretical perspective. I made clear use of an industry connection to gain inside knowledge of the developments occurring to bring this medium to the mainstream. Building a methodology that could sustain the level of analysis that I hoped to achieve, I observed the interactions between technology and industry, market forces and cultural influences. Having positioned my subject at the crest of a curling wave, I employed critical media theory to explore the potential implications of my subject in its wider context of social reality. This ambitious task has granted me insight into how the complex interactions of various fields give rise to social change. Along the way I have revealed seams rich in potential for further analysis.

McLuhan is proven to apply to yet another medium, the perspective he offers served my analysis quite well. A further exploration might make use of his Acoustic and Visual Space probe, Cavell’s basis for McLuhanistic spatial enquiry in his book McLuhan in Space (2002) would be a good starting point for such work, since it applies McLuhanism to the media of time and space, thus a good start for work on the presence of virtual objects. Media analysts occupied with screen design might wish to extend Bolter and Grusin’s (1999) work on remediation to the emergent Mobile AR technology, perhaps from an explicit digital gaming perspective. Those with interest in advertising or business as applied to Augmented Reality would do well to continue Benjaminian thought to its logical end: manipulating a virtual object to hold added-value for commercial enterprise. Those with a more creative bent might enjoy a study of the public perception of AR artworks using Benjamin also. There is scope for research into AR-based social interactions; gaming styles; immersion and identity formation, but this sort of work necessitates that first Mobile AR spends at least some time in public consciousness.

Finally, I believe that I have convincingly laid out an argument showing that AR is currently being developed and packaged as an entertainment technology, but its potential for community-driven, self-proliferating excitement of user-created content makes AR a significant and culturally-transformative technology. Convergence between media types will enable and drive the creation of innovative content which if successful will itself rely on new ways of accessing and viewing content and ultimately new forms of content and user experience entirely. We are at the crest of a wave. Will it wither and let a larger wave pass above it, or will it grow to reach tidal proportions? Despite my predictions, only time will tell.

Applying McLuhan

I begin with McLuhan, whose Laws of Media or Tetrad offers greater insights for Mobile AR, sustaining and developing upon the arguments developed in my assessment of the interlinking technologies that meet in Mobile AR, whilst also providing the basis to address some of this man’s deeper thoughts.

The tetrad can be considered an observation lens to turn upon one’s subject technology. It assumes four processes take place during each iteration of a given medium. These processes are revealed as answers to these following questions, taken from Levinson (1999):

“What aspect of society or human life does it enhance or amplify? What aspect, in favour or high prominence before the arrival of the medium in question, does it eclipse or obsolesce? What does the medium retrieve or pull back into centre stage from the shadows of obsolescence? And what does the medium reverse or flip into when it has run its course or been developed to its fullest potential?”

(Digital Mcluhan 1999: 189).

To ask each of these it is useful to transfigure our concept of Mobile AR into a more workable and fluid term: the Magic Lens, a common expression in mixed reality research. Making this change allows the exploration of the more theoretical aspects of the technology free of its machinic nature, whilst integrating a necessary element of metaphor that will serve to illustrate my points.

To begin, what does the Magic Lens amplify? AR requires the recognition of a pre-programmed real-world image in order to augment the environment correctly. It is the user who locates this target, it is important to mention. It could be said that the Magic Lens more magnifies than amplifies an aspect of the user’s environment, because like other optical tools the user must point the device towards it and look through, the difference with this Magic Lens is that one aspect of its target, one potential meaning, is privileged over all others. An arbitrary black and white marker holds the potential to mean many things to many people, but viewed through an amplifying Magic Lens it means only what the program recognises and consequently superimposes.

This superimposition necessarily obscures what lies beneath. McLuhan might recognise this as an example of obsolescence. The Magic Lens privileges virtual over real imagery, and the act of augmentation leaves physical space somewhat redundant: augmenting one’s space makes it more virtual than real. The AR target undergoes amplification, becoming the necessary foundation of the augmented reality. What is obsolesced by the Magic Lens, then, is not the target which it obscures, but everything except the target.

I am reminded of McLuhan’s Extensions of Man (1962: 13), which offers the view that in extending ourselves through our tools, we auto-amputate the aspect we seek to extend. There is a striking parallel to be drawn with amplification and obsolescence, which becomes clear when we consider that in amplifying an aspect of physical reality through a tool, we are extending sight, sound and voice through the Magic Lens to communicate in wholly new ways using The Virtual as a conduit. This act obsolesces physical reality, the nullification effectively auto-amputating the user from their footing in The Real. So where have they ‘travelled’? The Magic Lens is a window into another reality, a mixed reality where real and virtual share space. In this age of Mixed Realities, the tetrad can reveal more than previously intended: new dimensions of human interaction.

The third question in the tetrad asks what the Magic Lens retrieves that was once lost. So much new ground is gained by this technology that it would be difficult to make a claim. However, I would not hold belief in Mobile AR’s success if I didn’t recognise the exhumed, as well as the novel benefits that it offers. The Magic Lens retrieves the everyday tactility and physicality of information engagement, that which was obsolesced by other screen media such as television, the Desktop PC and the games console. The Magic Lens encourages users to interact in physicality, not virtuality. The act of actually walking somewhere to find something out, or going to see someone to play with them is retrieved. Moreover, we retrieve the sense of control over our media input that was lost by these same technologies. Information is freed into the physical world, transfiguring its meaning and offering a greater degree of manipulative power. Mixed Reality can be seen only through the one-way-glass of the Magic Lens, The Virtual cannot spill through unless we allow it to. We have seen that certain mainstream media can wholly fold themselves into reality and become an annoyance- think Internet pop-ups and mobile ringtones- through the Magic Lens we retrieve personal agency to navigate our own experience. I earlier noted that “the closer we can bring artefacts from The Virtual to The Real, the more applicable these can be in our everyday lives”; a position that resonates with my growing argument that engaging with digital information through the Magic Lens is an appropriate way to integrate and indeed exploit The Virtual as a platform for the provision of communication, leisure and information applications.

It is hard to approximate what the Magic Lens might flip into, since at this point AR is a wave that has not yet crested. I might suggest that since the medium is constrained to success in its mobile device form, its trajectory is likely entwined with that medium. So, the Magic Lens flips into whatever the mobile multimedia computer flips into. Another possibility is that the Magic Lens inspires such commercial success and industrial investment that a surge in demand for Wearable Computers shifts AR into a new form. This time, the user cannot dip in and out of Mixed Reality as they see fit, they are immersed in it whenever they wear their visor. This has connotations all of its own, but I will not expound my own views given that much cultural change must first occur to implement such a drastic shift in consumer fashions and demands. A third way for the Magic Lens to ‘flip’ might be its wider application in other media. Developments in digital ink technologies; printable folding screens; ‘cloud’ computing; interactive projector displays; multi-input touch screen devices; automotive glassware and electronic product packaging could all take advantage of the AR treatment. We could end up living far more closely with The Virtual than previously possible.

In their work The Global Village, McLuhan and Powers (1989) state that:

“The tetrad performs the function of myth in that it compresses past, present, and future into one through the power of simultaneity. The tetrad illuminates the borderline between acoustic and visual space as an arena of the spiralling repetition and replay, both of input and feedback, interlace and interface in the area of imploded circle of rebirth and metamorphosis”

(The Global Village 1989: 9)

I would be interested to hear their view on the unique “simultaneity” offered by the Magic Lens, or indeed the “metamorphosis” it would inspire, but I would argue that when applied from a Mixed Reality inter-media perspective, their outlook seems constrained to the stringent and self-involved rules of their own epistemology. Though he would be loath to admit it, Baudrillard took on McLuhan’s work as the basis of his own (Genosko, 1999; Kellner, date unknown), and made it relevant to the postmodern era. His work is cited by many academics seeking to forge a relationship to Virtual Reality in their research…

Summary So Far

In summary, Mobile AR has many paths leading to it. It is this convergence of various paths that makes a true historical appraisal of this technology difficult to achieve. However, I have highlighted facets of its contributing technologies that assist in the developing picture of the implications that Mobile AR has in store. A hybridisation of a number of different technologies, Mobile AR embodies the most gainful properties of its three core technologies: This analyst sees Mobile AR as a logical progression from VR, but recognises its ideological rather than technological founding. The hardware basis of Mobile AR stems from current mobile telephony trends that exploit the growing capabilities of Smartphone devices. The VR philosophy and the mobile technology are fused through the Internet, the means for enabling context-based, live-updating content, and housing databases of developer-built and user-generated digital objects and elements, whilst connecting users across the world.

I have shown that where the interest in VR technologies dwindled due to its limited real-world applicability, Mobile Internet also lacks in comparison to Mobile AR and its massive scope for intuitive, immersive and realistic interpretations of digital information. Wearable AR computing shares VR’s weaknesses, despite keeping the user firmly grounded in physical reality. Mobile AR offers a solution that places the power of these complex systems into a mobile telephone: the ubiquitous technology of our generation. This new platform solves several problems at once, most importantly for AR developers and interested Blue-chip parties, market readiness. Developing for Mobile AR is simply the commercially sensible thing to do, since the related industries are already making the changes required for its mass-distribution.

Like most nascent technologies, AR’s success depends on its commercial viability and financial investment, thus most sensible commercial developers of AR technologies are working on projects for the entertainment and advertising industries, where their efforts can be rewarded quickly. These small-scale projects are often simple in concept, easily grasped and thus not easily forgotten. I claim here that the first Mobile AR releases will generate early interest in the technology and entertainment markets, with the effect that press reportage and word-of-mouth behaviour assist Mobile AR’s uptake. I must be careful with my claims here however, since there is no empirical evidence to suggest that this will occur for Mobile AR. Looking at the emergence of previous technologies, however, the Internet and mobile telephony grew rapidly and to massive commercial success thanks to some strong business models and advancements in their own supporting technologies. It is strongly hoped by developers like Gameware and T-Immersion that Mobile AR can enjoy this same rapid lift-off. Both technologies gained prominence once visible in the markets thanks to a market segment called early adopters. This important group gathers their information from specialist magazine sources and word of mouth. Mobile AR developers would do well to recognise the power of this group, perhaps by offering shareware versions of their AR software that encourage a form of viral transmission that exploit text messaging.

Gameware have an interesting technique for the dissemination of their HARVEE software. They share a business interest with a Bluetooth technology firm, which has donated a prototype product the Bluetooth Push Box, which scans for local mobile devices and automatically sends files to users in acceptance. Gameware’s Push Box sends their latest demo to all visitors to their Cambridge office. This same technology could be placed in public places or commercial spaces to offer localised AR advertising, interactive tourist information, or 3D restaurant menus, perhaps.

Gameware, through its Nokia projects and HARVEE development program is well placed to gain exposure on the back of a market which is set to explode as mobile offerings become commercially viable, ‘social’, powerful, multipurpose and newsworthy. Projects like HARVEE are especially interesting in terms of their wide applicability and mass-market appeal. It is its potential as a revolutionary new medium that inspires this very series.

Reverse-Engineering AR

This section seeks to locate AR’s position within a wider context.

There are three media that converge in Mobile AR: Virtual Reality; the Internet and the mobile telephone, with other, subsidiary technologies as enablers to this end. Assessing the three of these in turn, we can glean knowledge of these highly influential media forms and their impact, the findings of which can be built into a model for the commercial diffusion and societal impact that Mobile AR might enjoy.

Virtual Reality is first up. Check out my next post in the series!

Gameware: A Case-Study in AR Development

I have been aided in this series by a connection with Gameware Development Limited, a Cambridge-based commercial enterprise working in the entertainment industry. Gameware was formed in May 2003 from Creature Labs Ltd, developing for the PC games market which produced the market leading game in Artificial Intelligence (AI), Creatures. When Gameware was formed, a strategic decision was made to move away from retail products and into the provision of technical services. They now work within the Broadcasting and Mobile Telephony space in addition to the traditional PC market. I use this business as a platform to launch into a discussion of the developments current and past that could see AR become a part of contemporary life, and just why AR is such a promising technology.

Gameware’s first explorations into AR came when they were commissioned by the BBC to develop an AR engine and software toolkit for a television show to be aired on the CBBC channel. The toolkit lets children build virtual creatures or zooks at home on their PCs which are uploaded back to the BBC and assessed:


A typical Zook, screenshot taken from Gameware's Zook Kit which lets children build virtual creatures
A typical Zook, screenshot taken from Gameware's Zook Kit which lets children build virtual creatures


The children with the best designs are then invited to the BAMZOOKi studio to have their virtual creatures compete against each other in a purpose-built arena comprised of real and digital elements. The zooks themselves are not real, of course, but the children can see silhouettes of digital action projected onto the arena in front of them. Each camera has an auxiliary camera pointed at AR markers on the studio ceiling, meaning each camera’s exact location in relation to the simulated events can be processed in real time. The digital creatures are stitched into the footage, and are then navigable and zoomable as if they were real studio elements. No post-production is necessary. BAMZOOKi is currently in its fourth series, with repeats aired daily:


BAMZOOKi, BBC's AR game show where children’s zooks compete in a studio environment
BAMZOOKi, BBC's AR game show where children’s zooks compete in a studio environment


BAMZOOKi has earned Childrens BBC some of its highest viewing figures (up to 1.2 million for the Monday shows on BBC1 and around 100,000 for each of the 20 episodes shown on digital Children’s BBC), which represents a massive milestone for AR and its emergence as a mainstream media technology. The evidence shows that there is a willing audience already receptive to contemporary AR applications. Further to the viewing figures the commercial arm of the BBC, BBC Worldwide, is in talks to distribute the BAMZOOKi format across the world, with its AR engine as its biggest USP. Gameware hold the rights required to further develop their BAMZOOKi intellectual property (IP), and are currently working on a stripped down version of their complex AR engine for the mobile telephony market.

I argue, however, that Broadcast AR is not the central application of AR technologies, merely an enabler for its wider applicability in other, more potent forms of media. Mobile AR offers a new channel of distribution for a variety of media forms, and it is its flexibility as a platform that could see it become a mainstream medium. Its successful deployment and reception is reliant on a number of cooperating factors; the innovation of its developers and the quality of the actual product being just part of the overall success the imminent release.

As well as their AR research, Gameware creates innovative digital games based on their Creatures AI engine. They recently produced Creebies; a digital game for Nokia Corp. Creebies is one of the first 3D games which incorporates AI for mobile phones. Gameware’s relationship with Nokia was strengthened when Nokia named them Pro-Developers. This is a title that grants Gameware a certain advantage: access to prototype mobile devices, hardware specifications, programming tools and their own Symbian operating system (Symbian OS) for mobile platforms. It was this development in combination with their experiences with BAMZOOKi and a long-standing collaboration with Cambridge University which has led to the idea for their HARVEE project. HARVEE stands for Handheld Augmented Reality Virtual Entertainment Engine.

Their product allows full 3D virtual objects to co-exist with real objects in physical space, viewed through the AR Device, which are animated, interactive and navigable, meaning the software can make changes to the objects as required, providing much space for interesting digital content. The applications of such a tool range from simple toy products; advertising outlets; tourist information or multiplayer game applications; to complex visualisations of weather movements; collaborating on engineering or architectural problems; or even implementing massive city-wide databases of knowledge where users might ‘tag’ buildings with their own graphical labels that might be useful to other AR users. There is rich potential here.

In HARVEE, Gameware attempt to surmount the limitations of current AR hardware in order to deliver the latest in interactive reality imaging to a new and potentially huge user base. Indeed, Nokia’s own market research suggests that AR-capable Smartphones will be owned by 25% of all consumers by 2009 (Nokia Research Centre Cambridge, non-public document). Mobile AR of the type HARVEE hopes to achieve represents not only a significant technical challenge, but also a potentially revolutionary step in mobile telephony technologies and the entertainment industry.

Gameware’s HARVEE project is essentially the creation of an SDK (Software Development Kit) which will allow developers to create content deliverable via their own Mobile AR applications. The SDK is written with the developer in mind, and does the difficult work of augmenting images and information related to the content. This simple yet flexible approach opens up a space for various types of AR content created at low cost for developers and end-users. I see Mobile AR’s visibility on the open market the only impediment to its success, and I believe that its simplicity of concept could see it become a participatory mass-medium of user-generated and mainstream commercial content.