Imitation & Flattery

I’ve been lucky enough to own this domain name for a number of years, and populate it with loads of content along the way. For a while, I ran a dedicated Tumblr sideblog of the same name which I have since merged into this site. More recently, I founded Digital Cortex Ltd., a formal means of handling a clutch of consultation projects. And now, this site is the front-end to my hosting business, offering virtual private server space to a few happy clients, as well as a playground for a few of the other little projects I’m working on.

Meanwhile, plenty of other people / groups / products have laid their claim to the Digital Cortex name, and I wanted to provide a quick review of them here, just for fun, but also to signpost should anyone have got lost in the ether.

[hr]

Chris Chan on Twitter

https://twitter.com/digitalcortex

A dude who’s only tweeted four times, not much else to say…
[hr]

Question Authority on YouTube

http://www.youtube.com/digitalcortex

A highly politicised channel featuring clips from documentaries and news broadcasts. It’s seemingly anti-corporate  / anti-government / anti-war. Whoever runs the channel quotes:

America will never be destroyed from the outside. If we falter, and lose our freedoms, it will be because we destroyed ourselves. (Abraham Lincoln)

Makes it all the more charming that one of his playlists is called Why I Love the 80’s, doesn’t it?
[hr]

Doc on Instagram

http://instagram.com/digitalcortex

I guess this is a tattooed guy who I assume wears glasses, eats pasta, and likes beer. He describes himself as “PhD -Piled Higher Deeper enuff said 😉
[hr]

Digital Cortex – The Movie

http://www.digital-cortex.com

A chap called Serhan Meewisse, a storyteller from the Netherlands, is making a film. He posted the below trailer to his YouTube channel:

About the film (autotranslated from Dutch):

Digital Cortex is a fiction story about Matt, who has just graduated from the film academy. Matt, the speed of the eternal accelerating system not keep after his studies. He gets his unattainable vision into depression and have thoughts about suicide. In desperation get Matt to his friend Andrew. Andrew may be the only solution for him.

A device that he can continue. system

Digital cortex makes the flow of information along the human visual cortex digital. Thoughts and fantasies are visual and are immediately visible on screen. Matt’s life is gaining momentum. Success is his second name. Because Matt is continuously working to become reality and fantasy begin to merge. Together his fantasy reality Matt is getting delusions and hallucinations. He stands for choice, back to his unhappy existence or lose himself in his imagination.

Sounds kind of cool – wonder if I’ll get an invite to the screening!
[hr]

Digital Cortex on LinkedIn

http://www.linkedin.com/company/digital-cortex

The leading social media marketing and customer experience agency. We help Business understand the power of having a marketing and communication presence through the Social medium.

Hmm… Not sure if they realise, but their web address redirects back here. Further googling suggests they might not be doing too well.
[hr]

Digital Cortex on SlideShare

http://www.slideshare.net/theopriestley/digital-cortex

A bit more info on what the above company does:


[hr]

Digital Cortex on SoundCloud

https://soundcloud.com/digital-cortex

Three guys named KyRow, Nebtune & Aaronson, who make Drum & Bass that sounds like this:

I recommend you also check out ‘Skull Fucker’, ‘nothing like a bowl of frosties’ and their remix of ‘Lana Del Rey – Born To Die’. They are also on Facebook and YouTube. Good shit, lads.
[hr]

DIGITALCORTEX.COM

Not active, but the WHOIS record indicates Brian Winn, a Professor of Telecommunication, Information Studies, and Media and Director of the Games for Entertainment and Learning (GEL) Lab at Michigan State University. We emailed a couple of years ago, and he provided some interesting backstory about the domain:

In terms of releasing digitalcortex.com, I am not interested at this point. I actually had a consulting company called Digital Cortex back in the late 90s and digitalcortex.com was the domain name for the company. Interestingly enough another company wanted the domain name and bought it for a substantial amount of money. Enough that we changed our company name and got a new domain name. Well, the story goes that a year or two later, that company went belly up in the .com crash and I bought the domain name back. I am not holding out for a big sale in the future (though I would not oppose it). I just have a sentimental connection with the domain … and I am thinking of using the name again for a new company.

Best of luck with it all, Brian.
[hr]

Digital Cortex in the US Trademark Records

COMPUTER SOFTWARE, WHETHER EMBEDDED IN ANOTHER PRODUCT OR ON A STAND-ALONE BASIS, WHICH ALLOWS THE USER OR ANOTHER COMPUTER SOFTWARE PROGRAM TO CAPTURE ANY DIGITAL CONTENT, AND TO USE, MANIPULATE, PROCESS, AND ROUTE THAT CONTENT, INCLUDING ORIGINAL ATTRIBUTES, TO AND FROM ANY COMPUTER SOFTWARE APPLICATION

The registrant was AnySoft, a tech company based in Newton, MA. From what I can dig up, their software ‘Digital Cortex 2.0′ was an approach to solving system and application interopability’ acting as a sort of software layer between various networked machines. More info here. Possibly the same guys who bought the domain from Brian Winn? Anyway, the trademark was cancelled a couple of years ago. A shame, too, because they also had this super snazzy logo:

Digital Cortex Anysoft Logo
[hr]

A few more:

Digital Cortex on Facebook

https://www.facebook.com/alamocityit

Providing IT Solutions for local non-profits and healthcare businesses.

[hr]

Digital Cortex Media

http://www.linkedin.com/pub/mark-fenger/11/43a/485

Digital Cortex is a small animation studio specializing in educational videos. We just completed work on ‘Echo’ a computer animated accent reduction tutor, prior to that we created a series of videos to accompany medical textbooks.

Sounds pretty cool, but couldn’t uncover any of their work.
[hr]

Digital Cortex by Dactilar

http://www.beatport.com/track/digital-cortex-original-mix/4307073

A deep house track, with a couple of good remixes. I really like this one.
[hr]

Digital Cortex on ‘Wandering Stan’ Blog

http://wanderingstan.com/2006-11-16/we_need_a_digital_cortex

A mini series of interesting blog posts by Stan James, starting with this.
[hr]

Digital Cortex dot IT

http://digitalcortex.it

Hi, I’m Matt Hileman, chief do-it-all at Digital Cortex […] Contact us any time with issues regarding any aspect of IT, networking, wireless, software installs and/or upgrades, PC’s, servers, storage, disaster recovery, backups and more…

Seems like there’s lots more going on behind the scenes.
[hr]

Digital Cortex dot CA

http://blog.digitalcortex.ca

This blog has up to date information on Network Security.

Last updated, Wednesday, November 3, 2010…
[hr]

Digital Cortex dot DE

http://digitalcortex.de

Another dead IT site.
[hr]

Cortex Professional Digital 4-in-1 Titanium Curling Iron

http://amzn.to/10V87la

You’d be surprised how much of my traffic comes from searches for this product!
[hr]

Cortex Digital

http://cortexdigital.com

A complete mystery…
[hr]

And that’s all I could find! Hopefully, I can remain the top site for the keyword, but if not the crown is bound to go to one of the above contenders. My money is on the trio of drum+bass producers – those search bots seem to love ’em!

The Ultimate Android Homescreen

I recently upgraded to a brand new phone, the Samsung Galaxy S2, and let me tell you, her beauty is a thing to behold.

This is my second Android device, my first being an HTC Hero, whom I loved like a little brother. But I love my Galaxy like she’s a sexy robot from the future, trained to be awesome.

Given I’ll be spending the next couple of years with her, it’s important that I maximise all that awesomeness. For me, that boils down to the following areas:

  • She needs to look attractive
  • She needs to let me do my thing
  • She needs to last ’til at least midnight
  • She needs to be constantly surprising
  • She needs to feel like she’s all mine

It’s quite possible to achieve these things from your Android device: it just requires a bit of time to work out your priorities, and sometimes the advice of a few well respected sources. Ultimately, it’s experience that leads to a happy relationship. By the way, yes, I’m still talking about mobile phones.

With all of this in mind, I think I’ve found my ultimate Android setup, the perfect relationship, if you will. So without further ado, I present to you my Ultimate Android Homescreen, a perfectly-tuned combination of sexiness, usefulness, battery life and entertainment.

At just three screens, she’s the most efficient I could conceive of – the product of several hours hard thinking!

  1. The ‘Immediacy’ Screen – stuff you need right now
  2. The ‘Entertainment’ Screen – stuff to feed your head
  3. The ‘Productivity’ Screen – stuff to get shit done

A couple of things glue this all together: Tasker, and LauncherPro. I also advise JuiceDefender, but like all of the apps listed below, it’s not an essential. After all, this is more a ‘what worked for me could work for you’ article (like this one).

(click the graphic to view in fullscreen)

Whether you follow this exact recipe, or you choose to develop your own ultimate Android homescreen, I hope you’ll be very happy together, and I’d love to hear from you in the comments below.

Applying McLuhan

I begin with McLuhan, whose Laws of Media or Tetrad offers greater insights for Mobile AR, sustaining and developing upon the arguments developed in my assessment of the interlinking technologies that meet in Mobile AR, whilst also providing the basis to address some of this man’s deeper thoughts.

The tetrad can be considered an observation lens to turn upon one’s subject technology. It assumes four processes take place during each iteration of a given medium. These processes are revealed as answers to these following questions, taken from Levinson (1999):

“What aspect of society or human life does it enhance or amplify? What aspect, in favour or high prominence before the arrival of the medium in question, does it eclipse or obsolesce? What does the medium retrieve or pull back into centre stage from the shadows of obsolescence? And what does the medium reverse or flip into when it has run its course or been developed to its fullest potential?”

(Digital Mcluhan 1999: 189).

To ask each of these it is useful to transfigure our concept of Mobile AR into a more workable and fluid term: the Magic Lens, a common expression in mixed reality research. Making this change allows the exploration of the more theoretical aspects of the technology free of its machinic nature, whilst integrating a necessary element of metaphor that will serve to illustrate my points.

To begin, what does the Magic Lens amplify? AR requires the recognition of a pre-programmed real-world image in order to augment the environment correctly. It is the user who locates this target, it is important to mention. It could be said that the Magic Lens more magnifies than amplifies an aspect of the user’s environment, because like other optical tools the user must point the device towards it and look through, the difference with this Magic Lens is that one aspect of its target, one potential meaning, is privileged over all others. An arbitrary black and white marker holds the potential to mean many things to many people, but viewed through an amplifying Magic Lens it means only what the program recognises and consequently superimposes.

This superimposition necessarily obscures what lies beneath. McLuhan might recognise this as an example of obsolescence. The Magic Lens privileges virtual over real imagery, and the act of augmentation leaves physical space somewhat redundant: augmenting one’s space makes it more virtual than real. The AR target undergoes amplification, becoming the necessary foundation of the augmented reality. What is obsolesced by the Magic Lens, then, is not the target which it obscures, but everything except the target.

I am reminded of McLuhan’s Extensions of Man (1962: 13), which offers the view that in extending ourselves through our tools, we auto-amputate the aspect we seek to extend. There is a striking parallel to be drawn with amplification and obsolescence, which becomes clear when we consider that in amplifying an aspect of physical reality through a tool, we are extending sight, sound and voice through the Magic Lens to communicate in wholly new ways using The Virtual as a conduit. This act obsolesces physical reality, the nullification effectively auto-amputating the user from their footing in The Real. So where have they ‘travelled’? The Magic Lens is a window into another reality, a mixed reality where real and virtual share space. In this age of Mixed Realities, the tetrad can reveal more than previously intended: new dimensions of human interaction.

The third question in the tetrad asks what the Magic Lens retrieves that was once lost. So much new ground is gained by this technology that it would be difficult to make a claim. However, I would not hold belief in Mobile AR’s success if I didn’t recognise the exhumed, as well as the novel benefits that it offers. The Magic Lens retrieves the everyday tactility and physicality of information engagement, that which was obsolesced by other screen media such as television, the Desktop PC and the games console. The Magic Lens encourages users to interact in physicality, not virtuality. The act of actually walking somewhere to find something out, or going to see someone to play with them is retrieved. Moreover, we retrieve the sense of control over our media input that was lost by these same technologies. Information is freed into the physical world, transfiguring its meaning and offering a greater degree of manipulative power. Mixed Reality can be seen only through the one-way-glass of the Magic Lens, The Virtual cannot spill through unless we allow it to. We have seen that certain mainstream media can wholly fold themselves into reality and become an annoyance- think Internet pop-ups and mobile ringtones- through the Magic Lens we retrieve personal agency to navigate our own experience. I earlier noted that “the closer we can bring artefacts from The Virtual to The Real, the more applicable these can be in our everyday lives”; a position that resonates with my growing argument that engaging with digital information through the Magic Lens is an appropriate way to integrate and indeed exploit The Virtual as a platform for the provision of communication, leisure and information applications.

It is hard to approximate what the Magic Lens might flip into, since at this point AR is a wave that has not yet crested. I might suggest that since the medium is constrained to success in its mobile device form, its trajectory is likely entwined with that medium. So, the Magic Lens flips into whatever the mobile multimedia computer flips into. Another possibility is that the Magic Lens inspires such commercial success and industrial investment that a surge in demand for Wearable Computers shifts AR into a new form. This time, the user cannot dip in and out of Mixed Reality as they see fit, they are immersed in it whenever they wear their visor. This has connotations all of its own, but I will not expound my own views given that much cultural change must first occur to implement such a drastic shift in consumer fashions and demands. A third way for the Magic Lens to ‘flip’ might be its wider application in other media. Developments in digital ink technologies; printable folding screens; ‘cloud’ computing; interactive projector displays; multi-input touch screen devices; automotive glassware and electronic product packaging could all take advantage of the AR treatment. We could end up living far more closely with The Virtual than previously possible.

In their work The Global Village, McLuhan and Powers (1989) state that:

“The tetrad performs the function of myth in that it compresses past, present, and future into one through the power of simultaneity. The tetrad illuminates the borderline between acoustic and visual space as an arena of the spiralling repetition and replay, both of input and feedback, interlace and interface in the area of imploded circle of rebirth and metamorphosis”

(The Global Village 1989: 9)

I would be interested to hear their view on the unique “simultaneity” offered by the Magic Lens, or indeed the “metamorphosis” it would inspire, but I would argue that when applied from a Mixed Reality inter-media perspective, their outlook seems constrained to the stringent and self-involved rules of their own epistemology. Though he would be loath to admit it, Baudrillard took on McLuhan’s work as the basis of his own (Genosko, 1999; Kellner, date unknown), and made it relevant to the postmodern era. His work is cited by many academics seeking to forge a relationship to Virtual Reality in their research…

Mobile Telephone

The Internet and the mobile phone are two mighty forces that have bent contemporary culture and remade it in their form. They offer immediacy, connectivity, and social interaction of a wholly different kind. These are technologies that have brought profound changes to the ways academia consider technoscience and digital communication. Their relationship was of interest to academics in the early 1990’s, who declared that their inevitable fusion would be the beginning of the age of Ubiquitous Computing: “the shift away from computing which centered on desktop machines towards smaller multiple devices distributed throughout the space” (Weiser, 1991 in Manovich, 2006). In truth, it was the microprocessor and Moore’s Law- “the number of transistors that can be fit onto a square inch of silicon doubles every 12 months” (Stokes, 2003) that led to many of the technologies that fall under this term: laptops, PDA’s, Digital Cameras, flash memory sticks and MP3 players. Only recently have we seen mobile telephony take on the true properties of the Internet.

The HARVEE project is partially backed by Nokia Corp. which recognises its potential as a Mobile 2.0 technology: user-generated content for mobile telephony that exploits web-connectivity. Mobile 2.0 is an emerging technology thematically aligned with the better established Web 2.0. Nokia already refer to their higher-end devices as multimedia computers, rather than as mobile phones. Their next generation Smartphones will make heavy use of camera-handling systems, which is predicated on the importance of user-generated content as a means to promote social interaction. This strategic move is likely to realign Nokia Corp.’s position in the mobile telephony and entertainment markets.

Last year, more camera phones were sold than digital cameras (Future Image, 2006). Nokia have a 12 megapixel camera phone ready for release in 2009, and it will be packaged with a processing unit equal to the power of a Sony PSP (Nokia Finland: non-public product specification document). MP3 and movie players are now a standard on many handsets, stored on plug-in memory cards and viewed through increasingly higher resolution colour screens. There is a growing mobile gaming market, the fastest growing sector of the Games Industry (Entertainment & Leisure Software Publishers Association (ELSPA) sales chart). The modern mobile phone receives its information from wide-band GPRS networks allowing greater network coverage and faster data transfer. Phone calls are the primary function, but users are exploiting the multi-media capabilities of their devices in ways not previously considered. It is these factors, technologic, economic and infrastructural that provide the perfect arena for Mobile AR’s entry into play.

Mobile Internet is the natural convergence of mobile telephony and the World Wide Web, and is already a common feature of new mobile devices. Mobile Internet, I would argue, is another path leading to Mobile AR, driven by mobile users demanding more from their handsets. Mobile 2.0 is the logical development of this technology- placing the power of location-based, user-generated content into a new real-world context. Google Maps Mobile is one such application that uses network triangulation and its own Google Maps technologies to offer information, directions, restaurant reviews or even satellite images of your current location- anywhere in the world. Mobile AR could achieve this same omniscience (omnipresence?) given the recent precedent for massively multi-user collaborative projects such as Wikipedia, Flickr and Google Maps itself. These are essentially commercially built infrastructures designed to be filled with everybody’s tags, comments or other content. Mobile AR could attract this same amount of devotion if it offered such an infrastructure and real-world appeal.

There is a growing emphasis on Ubiquitous Computing devices in our time-precious world, signified by the increased sales in Smartphones and WiFi enabled laptops. Perhaps not surprisingly, Mobile Internet use has increased as users’ devices become capable of greater connectivity. Indeed, the mobile connected device is becoming the ubiquitous medium of modernity, as yet more media converge in it. It is the mobile platform’s suitability to perform certain tasks that Mobile AR can take advantage of, locating itself in the niche currently occupied by Mobile Internet. Returning to my Mixed Reality Scale, Mobile AR serves the user better than Mobile Internet currently can: providing just enough reality to exploit virtuality, Mobile AR keeps the user necessarily grounded in their physical environment as they manipulate digital elements useful to their daily lives.

Gameware: A Case-Study in AR Development

I have been aided in this series by a connection with Gameware Development Limited, a Cambridge-based commercial enterprise working in the entertainment industry. Gameware was formed in May 2003 from Creature Labs Ltd, developing for the PC games market which produced the market leading game in Artificial Intelligence (AI), Creatures. When Gameware was formed, a strategic decision was made to move away from retail products and into the provision of technical services. They now work within the Broadcasting and Mobile Telephony space in addition to the traditional PC market. I use this business as a platform to launch into a discussion of the developments current and past that could see AR become a part of contemporary life, and just why AR is such a promising technology.

Gameware’s first explorations into AR came when they were commissioned by the BBC to develop an AR engine and software toolkit for a television show to be aired on the CBBC channel. The toolkit lets children build virtual creatures or zooks at home on their PCs which are uploaded back to the BBC and assessed:

 

A typical Zook, screenshot taken from Gameware's Zook Kit which lets children build virtual creatures
A typical Zook, screenshot taken from Gameware's Zook Kit which lets children build virtual creatures

 

The children with the best designs are then invited to the BAMZOOKi studio to have their virtual creatures compete against each other in a purpose-built arena comprised of real and digital elements. The zooks themselves are not real, of course, but the children can see silhouettes of digital action projected onto the arena in front of them. Each camera has an auxiliary camera pointed at AR markers on the studio ceiling, meaning each camera’s exact location in relation to the simulated events can be processed in real time. The digital creatures are stitched into the footage, and are then navigable and zoomable as if they were real studio elements. No post-production is necessary. BAMZOOKi is currently in its fourth series, with repeats aired daily:

 

BAMZOOKi, BBC's AR game show where children’s zooks compete in a studio environment
BAMZOOKi, BBC's AR game show where children’s zooks compete in a studio environment

 

BAMZOOKi has earned Childrens BBC some of its highest viewing figures (up to 1.2 million for the Monday shows on BBC1 and around 100,000 for each of the 20 episodes shown on digital Children’s BBC), which represents a massive milestone for AR and its emergence as a mainstream media technology. The evidence shows that there is a willing audience already receptive to contemporary AR applications. Further to the viewing figures the commercial arm of the BBC, BBC Worldwide, is in talks to distribute the BAMZOOKi format across the world, with its AR engine as its biggest USP. Gameware hold the rights required to further develop their BAMZOOKi intellectual property (IP), and are currently working on a stripped down version of their complex AR engine for the mobile telephony market.

I argue, however, that Broadcast AR is not the central application of AR technologies, merely an enabler for its wider applicability in other, more potent forms of media. Mobile AR offers a new channel of distribution for a variety of media forms, and it is its flexibility as a platform that could see it become a mainstream medium. Its successful deployment and reception is reliant on a number of cooperating factors; the innovation of its developers and the quality of the actual product being just part of the overall success the imminent release.

As well as their AR research, Gameware creates innovative digital games based on their Creatures AI engine. They recently produced Creebies; a digital game for Nokia Corp. Creebies is one of the first 3D games which incorporates AI for mobile phones. Gameware’s relationship with Nokia was strengthened when Nokia named them Pro-Developers. This is a title that grants Gameware a certain advantage: access to prototype mobile devices, hardware specifications, programming tools and their own Symbian operating system (Symbian OS) for mobile platforms. It was this development in combination with their experiences with BAMZOOKi and a long-standing collaboration with Cambridge University which has led to the idea for their HARVEE project. HARVEE stands for Handheld Augmented Reality Virtual Entertainment Engine.

Their product allows full 3D virtual objects to co-exist with real objects in physical space, viewed through the AR Device, which are animated, interactive and navigable, meaning the software can make changes to the objects as required, providing much space for interesting digital content. The applications of such a tool range from simple toy products; advertising outlets; tourist information or multiplayer game applications; to complex visualisations of weather movements; collaborating on engineering or architectural problems; or even implementing massive city-wide databases of knowledge where users might ‘tag’ buildings with their own graphical labels that might be useful to other AR users. There is rich potential here.

In HARVEE, Gameware attempt to surmount the limitations of current AR hardware in order to deliver the latest in interactive reality imaging to a new and potentially huge user base. Indeed, Nokia’s own market research suggests that AR-capable Smartphones will be owned by 25% of all consumers by 2009 (Nokia Research Centre Cambridge, non-public document). Mobile AR of the type HARVEE hopes to achieve represents not only a significant technical challenge, but also a potentially revolutionary step in mobile telephony technologies and the entertainment industry.

Gameware’s HARVEE project is essentially the creation of an SDK (Software Development Kit) which will allow developers to create content deliverable via their own Mobile AR applications. The SDK is written with the developer in mind, and does the difficult work of augmenting images and information related to the content. This simple yet flexible approach opens up a space for various types of AR content created at low cost for developers and end-users. I see Mobile AR’s visibility on the open market the only impediment to its success, and I believe that its simplicity of concept could see it become a participatory mass-medium of user-generated and mainstream commercial content.

What is AR and What is it Capable Of?

Presently, most AR research is concerned with live video imagery and it’s processing, which allows the addition of live-rendered 3D digital images. This new augmented reality is viewable through a suitably equipped device, which incorporates a camera, a screen and a CPU capable of running specially developed software. This software is written by specialist software programmers, with knowledge of optics, 3D-image rendering, screen design and human interfaces. The work is time consuming and difficult, but since there is little competition in this field, the rare breakthroughs that do occur are as a result of capital investment: something not willingly given to developers of such a nascent technology.

What is exciting about AR research is that once the work is done, its potential is immediately seen, since in essence it is a very simple concept. All that is required from the user is their AR device and a real world target. The target is an object in the real world environment that the software is trained to identify. Typically, these are specially designed black and white cards known as markers:

An AR marker, this one relates to a 3D model of Doctor Who's Tardis in Gameware's HARVEE kit
An AR marker, this one relates to a 3D model of Doctor Who's Tardis in Gameware's HARVEE kit

These assist the recognition software in judging viewing altitude, distance and angle. Upon identification of a marker, the software will project or superimpose a virtual object or graphical overlay above the target, which becomes viewable on the screen of the AR device. As the device moves, the digital object orients in relation to the target in real-time:

armarker2
Augmented Reality in action, multiple markers in use on the HARVEE system on a Nokia N73

The goal of some AR research is to free devices from markers, to teach AR devices to make judgements about spatial movements without fixed reference points. This is the cutting edge of AR research: markerless tracking. Most contemporary research, however, uses either marker-based or GPS information to process an environment.

Marker-based tracking is suited to local AR on a small scale, such as the Invisible Train Project (Wagner et al., 2005) in which players collaboratively keep virtual trains from colliding on a real world toy train track, making changes using their touch-screen handheld computers:

crw_80271
The Invisible Train Project (Wagner et al., 2005)

GPS tracking is best applied to large scale AR projects, such as ARQuake (Thomas et al, 2000), which exploits a scale virtual model of the University of Adelaide and a modified Quake engine to place on-campus players into a ‘first-person-shooter’. This application employs use of a headset, wearable computer, and a digital compass, which offer the effect that enemies appear to walk the corridors and ‘hide’ around corners. Players shoot with a motion-sensing arcade gun, but the overall effect is quite crude:

100-0007_img_21
ARQuake (Thomas et al, 2000)

More data input would make the game run smoother and would provide a more immersive player experience. The best applications of AR will exploit multiple data inputs, so that large-scale applications might have the precision of marker-based applications whilst remaining location-aware.

Readers of this blog will be aware that AR’s flexibility as a platform lends applicability to a huge range of fields:

  • Current academic work uses AR to treat neurological conditions: AR-enabled projections have successfully cured cockroach phobia in some patients (Botella et al., 2005);
  • There are a wide range of civic and architectural uses: Roberts et al. (2002) have developed AR software that enables engineers to observe the locations of underground pipes and wires in situ, without the need schematics
  • AR offers a potentially rich resource to the tourism industry: the Virtuoso project (Wagner et al., 2005) is a handheld computer program that guides visitors around an AR enabled gallery, providing additional aural and visual information suited to each artefact;

The first commercial work in the AR space was far more playful, however: AR development in media presentations for television has led to such primetime projects as Time Commanders (Lion TV for BBC2, 2003-2005) in which contestants oversee an AR-enabled battlefield, and strategise to defeat the opposing army, and FightBox (Bomb Productions for BBC2, 2003) in which players build avatars to compete in an AR ‘beat-em-up’ that is filmed in front of a live audience; T-Immersion (2003- ) produce interactive visual installations for theme parks and trade expositions; other work is much more simple, in one case the BBC commissioned an AR remote-control virtual Dalek meant for mobile phones, due for free download from BBC Online:

A Dalek, screenshot taken from HARVEE's development platform (work in progress)
A Dalek, screenshot taken from HARVEE's development platform (work in progress)

The next entry in this series is a case study in AR development. If you haven’t already done so, please follow me on Twitter or grab an RSS feed to be alerted when my series continues.

Introduction

Augmented Reality (AR) is a theme of computer research which deals with a combination of real world and computer generated data. AR is just one version of a Mixed Reality (MR) technology, where digital and real elements are mixed to create meaning. In essence AR is any live image that has an overlay of information that augments the meaning of these images.

Digital graphics are commonly put to work in the entertainment industry, and ‘mixing realities’ is a common motif for many of today’s media forms. There are varying degrees to which The Real and The Virtual can be combined. This is illustrated in my Mixed Reality Scale:

mixed-reality-scale
My Mixed Reality Scale, a simplified version of Milgram & Kishino’s (1994) Virtuality Continuum

This is a simplified version of Milgram and Kishino’s (1994) Virtuality Continuum; simplified, because their research is purely scientific, without an explicit interest in media theory or effects, therefore not wholly applicable to my analysis. At the far left of my Mixed Reality Scale lies The Real, or physical, every-day experiential reality. For the longest time we lived solely in this realm. Then, technological innovation gave rise to the cinema, and then television. These media are located one step removed from The Real, a step closer to The Virtual, and can be considered a window on another world. This world is visually similar to our own, a fact exploited by its author to narrate believable, somewhat immersive stories. If willing, the viewer is somewhat ‘removed’ from their grounding here in physical reality, allowing them to participate in the construction of a sculpted, yet static existence. The viewer can only observe this contained reality, and cannot interact with it, a function of the viewing apparatus.

Later advancements in screen media technologies allowed the superimposition of graphical information over moving images. These were the beginnings of AR, whereby most of what is seen is real with some digital elements supplementing the image. Indeed, this simple form of AR is still in wide use today, notably in cases where extra information is required to make sense of a subject. In the case of certain televised sports, for example, a clock and a scoreboard overlay a live football match, which provides additional information that is useful to the viewer. Television viewers are already accustomed to using information that is displayed in this way:

Simple Augmented Reality, televised football matches augment meaning with digital graphics
Simple Augmented Reality, televised football matches augment meaning with digital graphics

More recently, computing and graphical power gave designers the tools to build wholly virtual environments. The Virtual is a graphical representation of raw data, and the furthest removed from physical reality on my Mixed Reality Scale. Here lies the domain of Virtual Reality (VR), a technology that uses no real elements except for the user’s human senses. The user is submersed in a seemingly separate reality, where visual, acoustic and sometimes haptic feedback serve to transpose them into this artificial, yet highly immersive space. Notice the shift from viewer to user: this is a function of the interactivity offered by digital space. VR was the forerunner to current AR research, and remains an active realm of academic study.

Computer graphics also enhanced the possibilities offered by television and cinema, forging a new point on the Mixed Reality Scale. I refer to the Augmented Virtuality (AV) approach, which uses mainly digital graphics with some real elements superimposed. For example, a newsreader reporting from a virtual studio environment is one common application. I position AV one step closer towards The Virtual to reflect the ratio of real to virtual elements:

An Augmented Virtuality, the ITV newscasters sit at a real table in a virtual studio
An Augmented Virtuality, the ITV newscasters sit at a real table in a virtual studio

There is an expansive realm between AV and VR technologies, media which offer the user wholly virtual constructions that hold potential for immersion and interactivity. I refer to the media of video games and desktop computers. Here the user manipulates visually depicted information for a purpose. These media are diametrically opposed to their counterpart on my scale, the cinema and television, because they are windows this time into a virtual world, actively encouraging (rather than denying) user interactivity to perform their function. Though operating in virtuality, the user remains grounded in The Real due to apparatus constraints.

Now, further technological advancements allow the fusion of real and virtual elements in ways not previously possible. Having traversed our way from The Real to The Virtual, we have now begun to make our way back. We are making a return to Augmented Reality, taking with us the knowledge to manipulate wholly virtual 3D objects and the computing power to integrate digital information into live, real world imagery. AR is deservedly close to The Real on my scale, because it requires physicality to function. This exciting new medium has the potential to change the way we perceive our world, forging a closer integration between our two binary worlds. It is this potential as an exciting and entirely new medium that has driven me to carry out the following work.

To begin, I address the science behind AR and its current applications. Next, I exploit an industry connection to inform a discussion of AR’s development as an entertainment medium. Then, I construct a methodology for analysis from previous academic thought on emergent technologies, whilst addressing the problems of doing so. I use this methodology to locate AR in its wider technologic, academic, social and economic context. This discussion opens ground for a deeper analysis of AR’s potential socio-cultural impact, which makes use of theories of media and communication and spatial enquiry. I conclude with a final critique that holds implications for the further analysis of Mixed Reality technology.